Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Poincaré inequalities and quasiconformal structure on the boundary of some hyperbolic buildings


Authors: Marc Bourdon and Hervé Pajot
Journal: Proc. Amer. Math. Soc. 127 (1999), 2315-2324
MSC (1991): Primary 30C65, 51E24
DOI: https://doi.org/10.1090/S0002-9939-99-04901-1
Published electronically: April 9, 1999
MathSciNet review: 1610912
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we shall show that the boundary $\partial I_{p,q}$ of the hyperbolic building $I_{p,q}$ considered by M. Bourdon admits Poincaré type inequalities. Then by using Heinonen-Koskela's work, we shall prove Loewner capacity estimates for some families of curves of $\partial I_{p,q}$ and the fact that every quasiconformal homeomorphism $f : \partial I_{p,q} \longrightarrow \partial I_{p,q}$ is quasisymmetric. Therefore by these results, the answer to questions 19 and 20 of Heinonen and Semmes (Thirty-three YES or NO questions about mappings, measures and metrics, Conform Geom. Dyn. 1 (1997), 1-12) is NO.


References [Enhancements On Off] (What's this?)

  • 1. M. Bourdon, Immeubles hyperboliques, dimension conforme et rigidité de Mostow, Geometric And Functional Analysis, Vol. 7 (1997), 245-268. MR 98c:20056
  • 2. K. S. Brown, Buildings, Springer-Verlag (1989). MR 90e:20001
  • 3. M. Coornaert, T. Delzant, A. Papadopoulos, Géométrie et théorie des groupes, les groupes hyperboliques de M. Gromov, Lecture Notes in Mathematics 1441, Springer-Verlag (1991). MR 92f:57003
  • 4. F. W. Gehring, The definitions and exceptional sets for quasiconformal mappings, Annales Academiae Scientiarum Fennicae Ser. A1 281 (1960), 1-28. MR 23:A1800
  • 5. D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag (1983). MR 86c:35035
  • 6. P. Hajlasz, P. Koskela, Sobolev meets Poincaré, Compte Rendus de l'Académie des Sciences de Paris 320 (1995), 1211-1215. MR 96f:46062
  • 7. J. Heinonen, P. Koskela, Definitions of quasiconformality, Inventiones Mathematicae 120 (1995), 61-79. MR 96e:30051
  • 8. -, Quasiconformal maps in metric spaces with controlled geometry, Acta Mathematica, to appear.
  • 9. J. Heinonen, S. Semmes, Thirty-three YES or NO questions about mappings, measures and metrics, Conformal geometry and dynamics (electronic journal of the American Mathematical Society), Vol. 1 (1997), 1-12. CMP 97:13
  • 10. P. Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press (1995) MR 96h:28006
  • 11. F. Paulin, Un groupe hyperbolique est déterminé par son bord, Journal of the London Mathematical Society, vol. 54 (1996), 50-74. MR 97d:20042
  • 12. M. Ronan, Lectures on buildings, Academic Press (1988). MR 90j:20001
  • 13. S. Semmes, Finding curves on general metric spaces through quantitative topology, with applications for Sobolev and Poincaré inequalities, Selecta Mathematica, vol. 2, (1996), 155-295. MR 97j:46033
  • 14. J. Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Mathematics 229, Springer-Verlag (1971). MR 56:12260
  • 15. -, Quasimöbius maps, Journal d'Analyse Mathématique, Vol. 44 (1984/1985), 218-234. MR 87f:30059

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 30C65, 51E24

Retrieve articles in all journals with MSC (1991): 30C65, 51E24


Additional Information

Marc Bourdon
Affiliation: Institut Elie Cartan, Département de mathématiques, Université de Nancy I, BP 239, 54506 Vandoeuvre les Nancy, France
Email: marc.bourdon@iecn.u-nancy.fr

Hervé Pajot
Affiliation: Mathematical Science Research Institute, 1000 Centennial Drive, Berkeley, California 94720-5070
Address at time of publication: Département de Mathématiques, Université de Cergy-Pontoise, 2 avenue Adolphe Chauvin, BP222 Pontoise, 95302 Cergy-Pontoise Cédex, France
Email: pajot@u-cergy.fr

DOI: https://doi.org/10.1090/S0002-9939-99-04901-1
Keywords: Hyperbolic building, Poincar\'e inequality, quasiconformal mapping
Received by editor(s): October 28, 1997
Published electronically: April 9, 1999
Additional Notes: Parts of this work were done during a stay of the second author at MSRI. Research at MSRI is supported in part by NSF grant DMS-9022140.
Communicated by: Frederick W. Gehring
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society