THE MOD 2 COHOMOLOGY OF THE LINEAR GROUPS
OVER THE RING OF INTEGERS

DOMINIQUE ARLETTAZ, MAMORU MIMURA, KOJI NAKAHATA, AND
NOBUAKI YAGITA

(Communicated by Ralph Cohen)

Abstract. This paper completely determines the Hopf algebra structure of
the mod 2 cohomology of the linear groups $GL(Z)$, $SL(Z)$ and $St(Z)$ as a
module over the Steenrod algebra, and provides an explicit description of the
generators.

1. Introduction

Recently, J. Rognes and C. Weibel deduced from V. Voevodsky’s proof [V] of
the Milnor conjecture the complete calculation of the 2-torsion of the algebraic K-
theory of the ring of integers Z (see Table 1 of [W] and Theorem 0.6 of [RW]). Of
course, this has immediate consequences on the mod 2 cohomology of the infinite
general linear group $GL(Z)$ and more generally on the understanding of the space
$BGL(Z)^+$. In [Bok], M. Bökstedt tried to construct a 2-adic model for the space $BGL(Z)^+$:
he considered any prime number $p \equiv 3$ or 5 mod 8 and introduced a space $J(p)$
which is defined by the pull-back diagram

$$
\begin{array}{ccc}
J(p) & \xrightarrow{h'} & BO \\
\downarrow \phi' & & \downarrow c \\
F\Psi p & \xrightarrow{b} & BU,
\end{array}
$$

where $F\Psi p$ is the fiber of $(\Psi p - 1) : BU \rightarrow BU$ (recall that $F\Psi p \simeq BGL(\mathbb{F}_p)^+$
by Theorem 7 of [Q2]), b is the Brauer lifting and c is the complexification. The
fibers of the horizontal maps are homotopy equivalent to the unitary group U.
He was actually more precisely interested in the covering space $JK(Z,p)$ of $J(p)$
corresponding to the cyclic subgroup of order 2 of $\pi_1 J(p) \cong Z \oplus Z/2$. Bökstedt’s
definition of the space $JK(Z,p)$ (see [Bok], Definition 1.7 and the proof of Lemma
2.1) is based on the Adams conjecture and on the calculation of the 2-primary part
of the homotopy groups of $(F\Psi p)^2$ which is the same, in dimensions $\equiv 3$ mod 4, for

Received by the editors September 15, 1997.

1991 Mathematics Subject Classification. Primary 20G10; Secondary 19D55, 20J05, 55R40, 55S10.

We would like to thank Christian Ausoni for his helpful comments on Bökstedt’s work [Bok]
and the referee for his interesting suggestions. The third author thanks the Swiss National Science
Foundation for financial support.

©1999 American Mathematical Society
all primes \(p \equiv 3 \) or \(5 \) mod 8 (this explains the choice of \(p \); see Section 3 of [Au] for more details). Notice that the space \(JK(\mathbb{Z}, p) \), in the case \(p = 3 \), appears also in Section 4 of [DF] and in [M]. After completion at the prime 2, Bökstedt constructed a map

\[
\varphi : (BGL(\mathbb{Z})^+)^\wedge_2 \longrightarrow JK(\mathbb{Z}, p)^\wedge_2
\]

which induces a split surjection on all homotopy groups (see [Bok], Diagram 1.9). Recall that the localization exact sequence in K-theory implies that

\[
(BGL(\mathbb{Z}[\frac{1}{2}])^+)^\wedge_2 \simeq (BGL(\mathbb{Z})^+)^\wedge_2 \times (S^1)^\wedge_2.
\]

Therefore, \(\varphi \) provides a map

\[
\tilde{\varphi} : (BGL(\mathbb{Z}[\frac{1}{2}])^+)^\wedge_2 \longrightarrow J(p)^\wedge_2
\]

which also induces a split surjection on all homotopy groups. Bökstedt’s idea was indeed excellent because now the 2-torsion of \(K_*(\mathbb{Z}) \) is known and turns out to be isomorphic to the 2-torsion of \(\pi_*(JK(\mathbb{Z}, p)) \) (according to Table 1 of [W] and Theorem 0.6 of [RW]); therefore, \(\varphi \) and \(\tilde{\varphi} \) are actually homotopy equivalences. Observe in particular that the homotopy type of \((JK(\mathbb{Z}, p))^\wedge_2 \) does not depend on \(p \) (for \(p \equiv 3 \) or \(5 \) mod 8). Consequently, we obtain for all primes \(p \equiv 3 \) or \(5 \) mod 8 the pull-back diagram (see also Corollary 8 of [W])

\[
\begin{array}{ccc}
(BGL(\mathbb{Z})^+)^\wedge_2 \times (S^1)^\wedge_2 & \longrightarrow & BO^\wedge_2 \\
\downarrow f_p & & \downarrow \\
(F\Psi_p)^\wedge_2 & \longrightarrow & BU^\wedge_2,
\end{array}
\]

and the commutative diagram (where both rows are fibrations)

\[
(*)
\begin{array}{ccc}
SU^\wedge_2 & \eta \longrightarrow & (BGL(\mathbb{Z})^+)^\wedge_2 \\
\downarrow \zeta & & \downarrow f_p \\
U^\wedge_2 & \theta \longrightarrow & (F\Psi_p)^\wedge_2
\end{array}
\text{with } (BGL(\mathbb{Z})^+)^\wedge_2 \leftrightarrow (BGL(\mathbb{Z})^+)^\wedge_2 \times (S^1)^\wedge_2
\]

where \(f_p \) and \(h' \) respectively, and \(\zeta \) the 2-completion of the inclusion \(SU \hookrightarrow U \simeq SU \times S^1 \). According to Section 2 of [Bok], the map \(h \) is induced by the inclusion \(\mathbb{Z} \hookrightarrow \mathbb{R} \) and for all odd primes \(p \), the diagram

\[
\begin{array}{ccc}
(BGL(\mathbb{Z})^+)^\wedge_2 & \xrightarrow{\sim} & JK(\mathbb{Z}, p)^\wedge_2 \\
\downarrow \text{red}_p & & \downarrow f_p \\
(BGL(\mathbb{Z}/p)^+)^\wedge_2 & \xrightarrow{\sim} & (F\Psi_p)^\wedge_2,
\end{array}
\]

where \(\text{red}_p \) is the map induced by the reduction mod \(p : GL(\mathbb{Z}) \to GL(\mathbb{Z}/p) \), is homotopy commutative. Thus, we may assume that the map \(f_p \) in the diagram (\(* \)) is induced by the reduction mod \(p \).
S. Mitchell computed the mod 2 homology of the space $JK(Z,3)$ in Theorem 4.3 of [M]; because of the above homotopy equivalence $(BGL(Z)^+)^2 \simeq JK(Z,3)^2$, this provides the calculation of $H_*(BGL(Z)^+;Z/2)$ and by dualization the determination of the Hopf algebra structure of $H^*(BGL(Z)^+;Z/2)$ as a module over the Steenrod algebra \mathcal{A} (see [M], Remark 4.5). However, Mitchell’s argument does not give explicit generators of $H^*(BGL(Z)^+;Z/2)$. The first goal of the present paper is to use the above commutative diagram (*) in order to get a direct proof of Michell’s result.

Theorem. There is an isomorphism of Hopf algebras and of modules over the Steenrod algebra

$$\alpha : H^*(BGL(Z)^+;Z/2) \cong H^*(BO;Z/2) \otimes H^*(SU;Z/2).$$

Recall that $H^*(BO;Z/2) \cong Z/2[w_1, w_2, \ldots]$ and $H^*(SU;Z/2) \cong \Lambda(v_3, v_5, \ldots)$, where $\deg(w_j) = j$ and $\deg(v_{2k-1}) = 2k - 1$.

In fact, the main objective of this paper is to describe explicitly the generators of $H^*(BGL(Z)^+;Z/2)$. The generators of the polynomial part are the Stiefel-Whitney classes, also denoted by w, coming from $H^*(BO;Z/2)$ via the homomorphism induced by h. On the other hand, we identify precisely (see Definitions 5 and 10 and Remark 4.5) the exterior generators u_{2k-1} of degree $2k-1$ in $H^*(BGL(Z)^+;Z/2)$, corresponding to $1 \otimes v_{2k-1}$ under the above isomorphism α, in terms of the image of the homomorphism

$$f_p^* : H^*(F\Psi^p;Z/2) \cong H^*(BGL(F_p)^+;Z/2) \to H^*(BGL(Z)^+;Z/2)$$

induced by the reduction mod p for $p \equiv 5 \pmod{8}$ (they actually do not depend on the choice of p). We show that the classes u_{2k-1} are primitive cohomology classes and compute the action of the Steenrod squares on them. Therefore, we get an isomorphism of Hopf algebras and of modules over the Steenrod algebra

$$H^*(BGL(Z)^+;Z/2) \cong Z/2[w_1, w_2, \ldots] \otimes \Lambda(u_3, u_5, \ldots)$$

and we deduce that the isomorphism α is unique (see Theorem 11). We also obtain an explicit formula relating the classes u_{2k-1} to the image of the homomorphism f_p^* for all primes $p \equiv 3 \pmod{8}$ (see Theorem 13).

This provides a complete description of the mod 2 cohomology of the infinite general linear group $GL(Z)$. In the remainder of the paper we compute the mod 2 cohomology of the infinite special linear group $SL(Z)$ and of the infinite Steinberg group $St(Z)$ (see Corollary 15, Theorem 17 and Remark 18).

2. The mod 2 cohomology of the linear groups $GL(Z)$ and $SL(Z)$

Theorem 1. There is an isomorphism of Hopf algebras and of modules over the Steenrod algebra

$$\alpha : H^*(BGL(Z)^+;Z/2) \cong H^*(BO;Z/2) \otimes H^*(SU;Z/2).$$

Proof. As mentioned in the introduction, this follows indirectly from [M], Theorem 4.3 and Remark 4.5. Here is a direct argument. Let Q denote the subgroup of diagonal matrices in $GL(Z)$ and let $\lambda : BQ \to BGL(Z)^+$ be the map induced by the inclusion $Q \hookrightarrow GL(Z)$. It is known by Theorem 22.7 of [Bor] that the composition $h \lambda : BQ \to BO$ induces an injective homomorphism $\lambda^*h^* : H^*(BO;Z/2) \cong Z/2[w_1, w_2, \ldots] \to H^*(BQ;Z/2) \cong \lim_{\mapsto} \Z/2[z_1, z_2, \ldots, z_m]$ (with $\deg(z_i) = 1$) and that $\lambda^*h^*(w_j) = \sigma_j$, where σ_j is the element of $H^j(BQ;Z/2)$ whose restriction
to $\mathbb{Z}/2[z_1, z_2, \ldots, z_m]$ is the j-th elementary symmetric function in the m variables z_1, \ldots, z_m, for all $m \geq j$. This implies that the infinite loop map h induces an injective homomorphism $h^* : H^*(BO; \mathbb{Z}/2) \to H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2)$. Therefore, Theorem 15.2 of [Bor] shows that the Serre spectral sequence of the fibration

$$SU_2 \cong (BGL(\mathbb{Z})^+)_2 \xrightarrow{h} BO_2$$

collapses (see also Corollary 4.3 of [DF]) and we get additively the desired isomorphism. Since $(BGL(\mathbb{Z})^+)_2$ is an H-space, the maps λ and η produce an H-map

$$\psi : BQ \times SU_2 \longrightarrow (BGL(\mathbb{Z})^+)_2$$

which induces an injective A-module Hopf algebra homomorphism

$$\psi^* : H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2) \longrightarrow H^*(BQ; \mathbb{Z}/2) \otimes H^*(SU; \mathbb{Z}/2).$$

Moreover, the fact that $\lambda^* : H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2) \to H^*(BO; \mathbb{Z}/2)$ also satisfies $\lambda^*(w_j) = \sigma_j$ (see Lemma 1.1 of [Ar1]) implies that the image of ψ^* is isomorphic to $R \otimes H^*(SU; \mathbb{Z}/2)$, where R is the subalgebra of $H^*(BO; \mathbb{Z}/2)$ generated by the elementary symmetric functions σ_j. On the other hand, the image of the injective A-module Hopf algebra homomorphism

$$\lambda^* h^* \otimes 1 : H^*(BO; \mathbb{Z}/2) \otimes H^*(SU; \mathbb{Z}/2) \longrightarrow H^*(BO; \mathbb{Z}/2) \otimes H^*(SU; \mathbb{Z}/2)$$

is also $R \otimes H^*(SU; \mathbb{Z}/2)$. This provides the statement of the theorem.

In order to get a more precise picture of $H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2)$, let us identify its generators and understand the action of the Steenrod algebra on them. For $j \geq 1$ let us write $w_j \in H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2)$ for the image of the j-th universal Stiefel-Whitney class in $H^*(BO; \mathbb{Z}/2)$ under the homomorphism $h^* : H^*(BO; \mathbb{Z}/2) \to H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2)$. The action of the Steenrod algebra on the Stiefel-Whitney classes is known by Wu's formula (see for instance [MT], Part I, p. 141). It remains to identify the exterior generators of $H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2)$. This will be done by using the homomorphism $f_p^* : H^*(F\Psi^p; \mathbb{Z}/2) \to H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2)$ induced by the map f_p.

Let us first recall some properties of $H^*(F\Psi^p; \mathbb{Z}/2) \cong H^*(BGL(\mathbb{F}_p)^+; \mathbb{Z}/2)$. According to Quillen's calculation and notation (see [Q2]), if p is a prime $\equiv 5 \mod 8$, then

$$H^*(F\Psi^p; \mathbb{Z}/2) \cong \mathbb{Z}/2[c_1, c_2, \ldots] \otimes \Lambda(e_1, e_2, \ldots),$$

where $\deg c_j = 2j$ and $\deg e_k = 2k-1$; if p is a prime $\equiv 3 \mod 8$, then $H^*(F\Psi^p; \mathbb{Z}/2)$ is also generated by the classes c_j and e_k $(j \geq 1, k \geq 1)$, but one has the relations

$$e_k^2 = c_{2k-1} + \sum_{j=1}^{k-1} c_j c_{2k-1-j}$$

for $k \geq 1$, and $H^*(F\Psi^p; \mathbb{Z}/2)$ is polynomial:

$$H^*(F\Psi^p; \mathbb{Z}/2) \cong \mathbb{Z}/2[e_1, e_2, \ldots, c_2, c_4, \ldots]$$

(see also Section IV.8 of [FP]). In both cases, c_j is the image under $b^* : H^*(BU; \mathbb{Z}/2) \to H^*(F\Psi^p; \mathbb{Z}/2)$ of the reduction mod 2 of the j-th universal Chern class in $H^2(BU; \mathbb{Z})$ and a spectral sequence argument shows that

$$\theta^* : H^*(F\Psi^p; \mathbb{Z}/2) \to H^*(U; \mathbb{Z}/2) \cong \Lambda(v_1, v_2, \ldots)$$
satisfies $\theta^*(e_k) = v_{2k-1}$ for $k \geq 1$. For a prime $p \equiv 3$ or $5 \mod 8$, consider the homomorphism $f^*_p : H^*(F\Psi p; \mathbb{Z}/2) \rightarrow H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2)$ induced by f_p. For all $j \geq 1$, it is well known (see also Lemma 1.4 of [Ar1]) that

$$f^*_p(e_j) = w_j^2$$

and we established in [Ar2] for $k \geq 2$ the nonvanishing of the exterior class $f^*_p(e_k)$ if $p \equiv 5 \mod 8$, respectively of the exterior class

$$\gamma_k = f^*_p(e_k) + w_{2k-1} + \sum_{j=1}^{k-1} w_j w_{2k-j-1}$$

of degree $2k - 1$ if $p \equiv 3 \mod 8$.

Let us mention the effect of the Steenrod squares on these cohomology classes.

Lemma 2. (a) In $H^*(SU; \mathbb{Z}/2)$, $Sq^{2i} v_{2k-1} = \binom{k-1}{i} v_{2k+2i-1}$ for $k \geq 2$, $1 \leq i < k$, and $Sq^{2i-1} v_{2k-1} = 0$ for $k \geq 2$, $1 \leq i < k$.

(b) In $H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2)$, for any odd prime p, for $k \geq 1$ and $1 \leq i < k$,

$$Sq^{2i} f^*_p(e_k) = \left(\binom{k-1}{i} f^*_p(e_{k+i}) + \sum_{j=1}^i \binom{k-j-1}{i-j} (w_j^2 f^*_p(e_{k+i-j}) + w_{k+i-j}^2 f^*_p(e_j))\right).$$

(c) In $H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2)$, for $k \geq 1$ and $1 \leq i < k$,

$$Sq^{2i-1} f^*_p(e_k) = \begin{cases} 0, & \text{if } p \equiv 1 \mod 4 \text{ or if } p \equiv 3 \mod 4 \text{ and } k - i \text{ is odd}, \\ \sum_{j=0}^{i-1} \binom{k-j-1}{i-j-1} w_j^2 w_{k+i-j-1}, & \text{if } p \equiv 3 \mod 4 \text{ and } k - i \text{ is even}. \end{cases}$$

(d) In $H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2)$, for any prime $p \equiv 3 \mod 8$ and for $k \geq 1$,

$$Sq^{2i} \gamma_k = \left(\binom{k-1}{i} \gamma_{k+i} + \sum_{j=1}^i \binom{k-j-1}{i-j} (w_j^2 \gamma_{k+i-j} + w_{k+i-j}^2 \gamma_j)\right)$$

for $1 \leq i < k$ and $Sq^{2i-1} \gamma_k = 0$ for $1 \leq i \leq k$.

Proof. Lemma 4 of [Ar2] gives the following information on the action of the Steenrod squares on the classes $e_k \in H^*(F\Psi p; \mathbb{Z}/2)$ for $k \geq 1$: for any odd prime p and for $1 \leq i < k$,

$$Sq^{2i} e_k = \left(\binom{k-1}{i} e_{k+i} + \sum_{j=1}^i \binom{k-j-1}{i-j} (c_j e_{k+i-j} + e_{k+i-j} e_j)\right),$$

and for $1 \leq i \leq k$,

$$Sq^{2i-1} e_k = \begin{cases} 0, & \text{if } p \equiv 1 \mod 4 \text{ or if } p \equiv 3 \mod 4 \text{ and } k - i \text{ is odd}, \\ \sum_{j=0}^{i-1} \binom{k-j-1}{i-j-1} c_j e_{k+i-j-1}, & \text{if } p \equiv 3 \mod 4 \text{ and } k - i \text{ is even}. \end{cases}$$

The formula (a) is well known but can be deduced from the previous equalities because the composition $\xi^* \theta^*: H^*(F\Psi p; \mathbb{Z}/2) \rightarrow H^*(SU; \mathbb{Z}/2)$ satisfies $\xi^* \theta^*(e_k) = v_{2k-1}$ for $k \geq 2$ and $\xi^* \theta^*(e_j) = 0$ for $j \geq 1$. The statements (b) and (c) follow directly since $Sq^{2i} f^*_p(e_k) = f^*_p(Sq^{2i} e_k)$ and $f^*_p(e_j) = w_j^2$ for $j \geq 1$. In order to get (d), let us consider again the homomorphism $\lambda^*: H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2) \rightarrow$
Since the classes γ_k are exterior, they belong to the kernel of λ^* and $\lambda^*(Sq^{2i}\gamma_k) = 0$. However, the injectivity of λ^* on Stiefel-Whitney classes implies that the element of $\mathbb{Z}/2[w_1, w_2, \ldots]$ in the last formula vanishes. The assertion (c) shows that $Sq^{2i-1}\gamma_k$ is an element of $\mathbb{Z}/2[w_1, w_2, \ldots]$ and one deduces similarly that $Sq^{2i-1}\gamma_k = 0$.

Our argument will be based on the understanding of the homomorphism
\[\mu^*: H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2) \to H^*(BGL(\mathbb{Z})^+ \times BGL(\mathbb{Z})^+; \mathbb{Z}/2) \]
\[\cong H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2) \otimes H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2) \]
induced by the H-space structure μ of $BGL(\mathbb{Z})^+$.

Lemma 3. (a) For any $j \geq 1$,
\[\mu^*(w_j) = \sum_{s=0}^{j} w_s \otimes w_{j-s} . \]

(b) For any prime $p \equiv 5 \mod 8$ and any integer $k \geq 2$,
\[\mu^*(f_p^*(e_k)) = f_p^*(e_k) \otimes 1 + 1 \otimes f_p^*(e_k) + \sum_{\ell=1}^{k-2} (w_\ell^2 \otimes f_p^*(e_{k-\ell}) + f_p^*(e_{k-\ell}) \otimes w_\ell^2) . \]

(c) For any prime $p \equiv 3 \mod 8$ and any integer $k \geq 2$,
\[\mu^*(\gamma_k) = \gamma_k \otimes 1 + 1 \otimes \gamma_k + \sum_{\ell=1}^{k-2} (w_\ell^2 \otimes \gamma_{k-\ell} + \gamma_{k-\ell} \otimes w_\ell^2) . \]

Proof. Assertion (a) is known (see for instance [MT], Part I, p. 140). If ν denotes the H-space structure of $F\Psi^p$, Proposition 2 of [Q2] implies that
\[\mu^*(f_p^*(e_k)) = f_p^*(\nu^*(e_k)) = f_p^*(\sum_{\ell=0}^{k} (c_\ell \otimes e_{k-\ell} + e_{k-\ell} \otimes c_\ell)) \]
\[= \sum_{\ell=0}^{k} (w_\ell^2 \otimes f_p^*(e_{k-\ell}) + f_p^*(e_{k-\ell}) \otimes w_\ell^2) . \]
for any odd prime \(p \). If \(p \equiv 5 \) mod 8, \(f_p^*(e_1) \) vanishes since \(e_1 \) is exterior and one gets immediately (b). If \(p \equiv 3 \) mod 8, the definition of \(\gamma_k \),

\[
\gamma_k = f_p^*(e_k) + w_{2k-1} + \sum_{j=1}^{k-1} w_j w_{2k-j-1},
\]

shows that

\[
\mu^*(\gamma_k) = \sum_{\ell=0}^{k} \left(w_{\ell}^2 \otimes f_p^*(e_{k-\ell}) + f_p^*(e_{k-\ell}) \otimes w_{\ell}^2 \right) + (\text{element of } \mathbb{Z}/2[w_1, w_2, \ldots]).
\]

Since \(p \equiv 3 \) mod 8, it turns out that \(f_p^*(e_1) = w_1 \) and consequently that

\[
\mu^*(\gamma_k) = \gamma_k \otimes 1 + 1 \otimes \gamma_k + \sum_{\ell=1}^{k-2} \left(w_{\ell}^2 \otimes \gamma_{k-\ell} + \gamma_{k-\ell} \otimes w_{\ell}^2 \right)
+ (\text{element of } \mathbb{Z}/2[w_1, w_2, \ldots]).
\]

However, the element of \(\mathbb{Z}/2[w_1, w_2, \ldots] \) in that formula must be trivial since \(\mu^*(\gamma_k) \) is exterior. This implies the last assertion. \(\square \)

Now, let \(p \) be a prime \(\equiv 5 \) mod 8 and \(k \) an integer \(\geq 2 \). Consider an integer \(m \geq k \), \(C \) the cyclic group of order \(p - 1 \) and

\[
H^*(BC^m; \mathbb{Z}/2) \cong \mathbb{Z}/2[x_1, x_2, \ldots, x_m] \otimes \Lambda(y_1, y_2, \ldots, y_m)
\]

defined by \(d \) and \(d(y_i) = 0 \). Then, look at the homomorphism \(\rho : H^*(F \Psi^p; \mathbb{Z}/2) \to H^*(BC^m; \mathbb{Z}/2) \), introduced in [Q2], p. 563–565, which is injective in dimensions \(\leq 2m \) (and in particular in dimensions \(\leq 2k \)) since its kernel is the ideal generated by the elements \(c_j \) and \(e_j \) for \(j > m \), and which fulfills \(\rho(c_j) = s_j \) and \(\rho(e_j) = d(s_j) \) for \(1 \leq j \leq m \), where \(s_j \) denotes the \(j \)-th elementary symmetric function in \(x_1, x_2, \ldots, x_m \). For \(k \geq 1 \), define the exterior class

\[
\xi_k = \sum_{j=1}^{m} x_j^{k-1} y_j \in H^{2k-1}(BC^m; \mathbb{Z}/2).
\]

Since \(s_k = \sum_{i_1 < i_2 < \ldots < i_k} x_{i_1} x_{i_2} \cdots x_{i_k} \), one has

\[
d(s_k) = \sum_{i_1 < i_2 < \ldots < i_k} \sum_{\ell} x_{i_1} \cdots \widehat{x_{i_\ell}} \cdots x_{i_k} y_i.
\]

Then, consider the difference

\[
d(s_k) - s_{k-1} \xi_1 = \sum_{i_1 < i_2 < \ldots < i_k} \sum_{\ell} x_{i_1} \cdots \widehat{x_{i_\ell}} \cdots x_{i_k} y_i
- \sum_{i_1 < i_2 < \ldots < i_{k-1}} x_{i_1} x_{i_2} \cdots x_{i_{k-1}} \sum_i y_i
= \sum_{i_1 < i_2 < \ldots < i_{k-1}} \sum_{\ell} x_{i_1} x_{i_2} \cdots x_{i_\ell} \cdots x_{i_{k-1}} y_i
= \sum_{i_1 < i_2 < \ldots < i_{k-1}} \sum_{\ell} x_{i_1} x_{i_2} \cdots \widehat{x_{i_\ell}} \cdots x_{i_{k-1}} x_{i_\ell} y_i.
\]
From this formula, one may compute the difference
$$d(s_k) - s_{k-1} \xi_1 - s_{k-2} \xi_2 = \sum_{i_1 < i_2 < \cdots < i_{k-2}} \sum_{\ell} x_{i_1} x_{i_2} \cdots \bar{x}_{i_\ell} \cdots x_{i_{k-2}} \bar{x}_{i_{\ell}} y_{i_\ell}$$
and obtain by induction
$$d(s_k) = \xi_k + \sum_{j=1}^{k-1} s_j \xi_{k-j}$$
for $k \geq 2$. Since $\rho(e_k) = d(s_k)$ and $\rho(c_j) = s_j$, we get
$$\rho(e_k) = \xi_k + \sum_{j=1}^{k-1} \rho(c_j) \xi_{k-j}.$$
This implies inductively that the exterior class ξ_k belongs to the image of ρ and the injectivity of ρ in dimensions $\leq 2k$ produces the following lemma.

Lemma 4. For $p \equiv 5 \mod 8$ and for any $k \geq 2$, the class $e_k \in H^{2k-1}(F^p; \mathbb{Z}/2)$ satisfies
$$e_k = \rho^{-1}(\xi_k) + \sum_{j=1}^{k-1} c_j \rho^{-1}(\xi_{k-j}).$$

Definition 5. Let p be a prime $\equiv 5 \mod 8$. For all integers $k \geq 2$, let us define the exterior class $u_{2k-1}(p) = f_p^*(\rho^{-1}(\xi_k)) \in H^{2k-1}(BGL(\mathbb{Z})^+; \mathbb{Z}/2)$, where f_p^* denotes the homomorphism $H^*(F^p; \mathbb{Z}/2) \rightarrow H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2)$ induced by f_p. Observe that this definition does not depend on the choice of $m \geq k$. Notice also that $f_p^*(\rho^{-1}(\xi_1)) = f_p^*(e_1) = 0$.

Proposition 6. For any prime $p \equiv 5 \mod 8$ and for $k \geq 2$, one has:

(a) $u_{2k-1}(p) = f_p^*(e_k) + \sum_{j=1}^{k-2} w_j^2 u_{2k-2j-1}(p)$,

(b) the homomorphism $\eta^* : H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2) \rightarrow H^*(SU; \mathbb{Z}/2)$ fulfills $\eta^*(u_{2k-1}(p)) = v_{2k-1}$.

Proof. Lemma 4 implies that
$$f_p^*(e_k) = u_{2k-1}(p) + \sum_{j=1}^{k-2} w_j^2 u_{2k-2j-1}(p)$$
since $f_p^*(\rho^{-1}(\xi_1)) = 0$. Consequently, (b) follows directly from the commutativity of the following diagram induced by the diagram (\ast) of the introduction

$$
\begin{array}{ccc}
H^*(SU; \mathbb{Z}/2) & \xrightarrow{\eta^*} & H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2) \\
\uparrow{\zeta^*} & & \uparrow{f_p^*} \\
H^*(U; \mathbb{Z}/2) & \xrightarrow{\theta^*} & H^*(F^p; \mathbb{Z}/2) \\
& & \downarrow{b^*} \\
& & H^*(BU; \mathbb{Z}/2),
\end{array}
$$

because $\eta^* f_p^*(e_k) = \zeta^* \theta^* (e_k) = v_{2k-1}$ and $\eta^* (w_j) = 0$ for all $k \geq 2, j \geq 1$.

Proposition 7. For any prime $p \equiv 5 \mod 8$ and for any integer $k \geq 2$, the element $u_{2k-1}(p)$ is a primitive cohomology class in $H^{2k-1}(BGL(\mathbb{Z})^+; \mathbb{Z}/2)$.

The last sum can be written as follows:

\[u = \sum_{j=1}^{k-2} w_{j}^{2} u_{2k-2j-1}(p) . \]

Consequently, \(\mu \) is exactly one nontrivial primitive exterior class in each odd degree. We proceed by induction on \(k \). We just established in Proposition 6 that

\[u_{2k-1}(p) = f_{p}^{*}(e_{k}) + \sum_{j=1}^{k-2} w_{j}^{2} u_{2k-2j-1}(p) . \]

For instance, \(u_{3}(p) = f_{p}^{*}(e_{2}) \) and it follows from Lemma 3 (b) that \(\mu^{*}(u_{3}(p)) = u_{3}(p) \otimes 1 + 1 \otimes u_{3}(p) \). We then may deduce from Lemma 3 (a) and (b) and the induction hypothesis that

\[u^{*}(u_{2k-1}(p)) = f_{p}^{*}(e_{k}) \otimes 1 + 1 \otimes f_{p}^{*}(e_{k}) + \sum_{j=1}^{k-2} (w_{j}^{2} f_{p}^{*}(e_{k-j-1}) + f_{p}^{*}(e_{k-j-1}) \otimes w_{j}^{2}) \]

and therefore that

\[u^{*}(u_{2k-1}(p)) = u_{2k-1}(p) \otimes 1 + 1 \otimes u_{2k-1}(p) \]

\[+ \sum_{j=1}^{k-2} \left(w_{j}^{2} \otimes u_{2k-2j-1}(p) + u_{2k-2j-1}(p) \otimes w_{j}^{2} \right) \]

\[+ \sum_{j=1}^{k-3} \sum_{i=1}^{k-i} \left(w_{j}^{2} w_{i}^{2} u_{2k-2j-1}(p) + w_{i}^{2} u_{2k-2j-1}(p) \otimes w_{j}^{2} \right) \]

\[+ \sum_{j=1}^{k-2} \left(w_{j}^{2} \otimes u_{2k-2j-1}(p) + u_{2k-2j-1}(p) \otimes w_{j}^{2} \right) \]

\[+ \sum_{j=1}^{k-2} \sum_{s=1}^{j-1} \left(w_{s}^{2} u_{2k-2j-1}(p) \otimes w_{j-s}^{2} + w_{s}^{2} \otimes w_{j-s}^{2} u_{2k-2j-1}(p) \right) . \]

The last sum can be written as follows:

\[\sum_{j=1}^{k-2} \sum_{s=1}^{j-1} \left(w_{s}^{2} u_{2k-2j-1}(p) \otimes w_{j-s}^{2} + w_{s}^{2} \otimes w_{j-s}^{2} u_{2k-2j-1}(p) \right) \]

\[= \sum_{j=1}^{k-3} \sum_{s=1}^{j-1} \left(w_{s}^{2} \otimes u_{2k-2j-1}(p) + u_{2k-2j-1}(p) \otimes w_{s}^{2} \right) \]

\[= \sum_{s=1}^{k-3} \sum_{t=1}^{s-1} \left(w_{s}^{2} \otimes u_{2k-2s-2t-1}(p) + u_{2k-2s-2t-1}(p) \otimes w_{s}^{2} \right) . \]

Consequently, \(\mu^{*}(u_{2k-1}(p)) = u_{2k-1}(p) \otimes 1 + 1 \otimes u_{2k-1}(p) \) and \(u_{2k-1}(p) \) is primitive.

Remark 8. Since we know that the Hopf algebra structure of \(H^{*}(BGL(\mathbb{Z}^{+}; \mathbb{Z}/2) \) by Theorem 1 (or [M], Theorem 4.3 and Remark 4.5), it is obvious that there is exactly one nontrivial primitive exterior class in each odd degree \(\geq 3 \) of \(H^{*}(BGL(\mathbb{Z}^{+}; \mathbb{Z}/2) \). However, let us show it again by a computational argument.
Lemma 9. Consider the homomorphism \(\eta^*: H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2) \rightarrow H^*(SU; \mathbb{Z}/2) \). For \(k \geq 2 \), let \(u''_{2k-1} \) and \(u'_j \) be primitive exterior classes of degree \(2k-1 \) in \(H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2) \) such that \(\eta^*(u''_{2k-1}) = \eta^*(u''_{2k-1}) = v_{2k-1} \). Then \(u''_{2k-1} = u'_j \).

Proof. Observe first that \(u'_j = u''_{2j-1} \) since there is only one exterior class of degree 3 in \(H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2) \). Then, let us define \(\tilde{u}_{2k-1} = u''_{2k-1} - u''_{2k-1} \) for all \(k \geq 2 \) and prove by induction on \(k \) that \(\tilde{u}_{2k-1} = 0 \). Since \(\tilde{u}_{2k-1} \) is exterior and belongs to the kernel of \(\eta^* \), the induction hypothesis shows that one can write

\[
\tilde{u}_{2k-1} = \sum_{s=3}^{2k-2} u'(s)w(s),
\]

where \(u'(s) \) is an element of degree \(s \) in \(\Lambda(u'_3, u'_5, \ldots, u'_s) \) and \(w(s) \) is an element of degree \(2k-s-1 \) in \(\mathbb{Z}/2[w_1, w_2, \ldots] \). However, the primitivity of the classes \(u'_j \) and Lemma 3 (a) provide an explicit computation of \(\mu^*(\tilde{u}_{2k-1}) \) which contradicts the primitivity of \(\tilde{u}_{2k-1} \) unless one has \(\tilde{u}_{2k-1} = 0 \).

Thus, we are finally able to define the exterior generators of \(H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2) \) (see also Remark 14 below).

Definition 10. Because of Proposition 7 and Remark 8, we may conclude that the classes \(u_{2k-1}(p) \) do not depend on \(p \). Therefore, for \(k \geq 2 \), we can define \(u_{2k-1} = u_{2k-1}(p) \) in \(H^{2k-1}(BGL(\mathbb{Z})^+; \mathbb{Z}/2) \) for any prime \(p \equiv 5 \, \text{mod} \, 8 \). Since the image of \(u_{2k-1} \) under \(\eta^* \) is \(v_{2k-1} \), the classes \(u_{2k-1} \) are nontrivial algebraically independent exterior classes in \(H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2) \). See also Remark 14 for another definition of the classes \(u_{2k-1} \).

The following consequence follows immediately from Proposition 6 (b) and Remark 8.

Theorem 11. The isomorphism \(\alpha : H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2) \cong H^*(SU; \mathbb{Z}/2) \otimes H^*(BO; \mathbb{Z}/2) \) given by Theorem 1 is unique and satisfies \(\alpha(u_{2k-1}) = 1 \otimes v_{2k-1} \) for \(k \geq 2 \). Therefore, there is an isomorphism of \(\mathcal{A} \)-module Hopf algebras

\[
H^*(BGL(\mathbb{Z})^+; \mathbb{Z}/2) \cong \mathbb{Z}/2[w_1, w_2, \ldots] \otimes \Lambda(u_3, u_5, \ldots).
\]

It follows from Theorem 11 and Lemma 2 (a) that the action of the Steenrod algebra on the classes \(u_{2k-1} \) is described by the following Lemma 12. However, we mention here another proof, based on the definition of \(\xi_k \), which provides an explicit computational argument for the existence of the isomorphism of \(\mathcal{A} \)-module Hopf algebras \(\alpha \).

Lemma 12. For all \(k \geq 2 \), \(Sq^{2i}u_{2k-1} = \binom{k-1}{i}u_{2k+2i-1} \) for \(1 \leq i < k \) and \(Sq^{2i-1}u_{2k-1} = 0 \) for \(1 \leq i \leq k \).

Proof. It is sufficient to prove the assertion for the classes \(u_{2k-1}(p) \) where \(p \) is any prime \(\equiv 5 \, \text{mod} \, 8 \). This follows from the injectivity of the map \(\rho \) which was explained just after the proof of Lemma 3 (if \(m \) is large enough) and from the computations \(Sq^{2i-1}\xi_k = 0 \) and

\[
Sq^{2i}\xi_k = \sum_{j=1}^{m} Sq^{2i}x_j\xi_k y_j = \sum_{j=1}^{m} \binom{k-1}{i}x_j^{k+i-1}y_j = \binom{k-1}{i} \xi_k^{k+i}.
\]
It is even possible to describe the classes u_{2k-1} in terms of the image of f_p^* for all primes $p \equiv 3$ or $5 \mod 8$.

Theorem 13. For $k \geq 2$, the classes $u_{2k-1} \in H^{2k-1}(BGL(Z)^+; \mathbb{Z}/2)$ satisfy

$$u_{2k-1} = \begin{cases}
 f_p^*(e_k) + \sum_{j=1}^{k-2} w_j^2 u_{2k-2j-1}, & \text{if } p \equiv 5 \mod 8, \\
 f_p^*(e_k) + w_{2k-1} + \sum_{j=1}^{k-1} w_j w_{2k-j-1} + \sum_{j=1}^{k-2} w_j^2 u_{2k-2j-1}, & \text{if } p \equiv 3 \mod 8,
\end{cases}$$

where f_p^* denotes the homomorphism $H^*(F\Psi; \mathbb{Z}/2) \cong H^*(BGL(\mathbb{F}_p)^+; \mathbb{Z}/2) \to H^*(BGL(Z)^+; \mathbb{Z}/2)$ induced by the reduction mod $p : GL(Z) \to GL(\mathbb{F}_p)$.

Proof. If $p \equiv 5 \mod 8$, the statement is given by Proposition 6 (a). Observe in particular that u_{2k-1} can be written as follows: $u_{2k-1} = F_k(f_p^*(e_2), f_p^*(e_3), \ldots, f_p^*(e_k))$, where F_k is a polynomial with coefficients in $\mathbb{Z}/2[w_1, w_2, \ldots]$. If $p \equiv 3 \mod 8$, consider again

$$\gamma_k = f_p^*(e_k) + w_{2k-1} + \sum_{j=1}^{k-1} w_j w_{2k-j-1}$$

and define $\tilde{u}_{2k-1} = F_k(\gamma_2, \gamma_3, \ldots, \gamma_k)$. It is obvious that \tilde{u}_{2k-1} is an exterior class and easy to check as in the proof of Proposition 6 that $\eta^*(\tilde{u}_{2k-1}) = u_{2k-1}$. Moreover, observe that the homomorphism

$$\mu^* : H^*(BGL(Z)^+; \mathbb{Z}/2) \to H^*(BGL(Z)^+ \times BGL(Z)^+; \mathbb{Z}/2)$$

acts on γ_k (for $p \equiv 3 \mod 8$) and on $f_p^*(e_k)$ (for $p \equiv 5 \mod 8$) exactly in the same way, according to Lemma 3 (b) and (c). Thus, the argument of the proof of Proposition 7 implies that \tilde{u}_{2k-1} is also primitive if $p \equiv 3 \mod 8$. It finally follows from Remark 8 that

$$u_{2k-1} = \tilde{u}_{2k-1} = F_k(\gamma_2, \gamma_3, \ldots, \gamma_k) = \gamma_k + \sum_{j=1}^{k-2} w_j^2 u_{2k-2j-1}.$$

Remark 14. The formula provided by Theorem 13 can be used as an alternative recursive definition of the classes u_{2k-1} in $H^*(BGL(Z)^+; \mathbb{Z}/2)$.

It is known that $BGL(Z)^+ \cong BSL(Z)^+ \times BZ/2$ and one deduces immediately the calculation of the mod 2 cohomology of the space $BSL(Z)^+$ (recall that $H^*(BSL(\mathbb{F}_p)^+; \mathbb{Z}/2)$ is obtained from $H^*(BGL(\mathbb{F}_p)^+; \mathbb{Z}/2)$ by dividing out e_1 and c_0):

Corollary 15. There is an isomorphism of A-module Hopf algebras

$$H^*(BSL(Z)^+; \mathbb{Z}/2) \cong \mathbb{Z}/2[w_2, w_3, \ldots] \otimes \Lambda(w_3, w_5, \ldots),$$

where w_k and u_{2k-1} are also written for the image of w_k and u_{2k-1} under the homomorphism induced by the inclusion $SL(Z) \hookrightarrow GL(Z)$. The formulas for u_{2k-1} given by Theorem 13 do still hold but observe that the first Stiefel-Whitney class of $SL(Z)$ is trivial.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

Remark 16. The results of this section determine also the mod 2 cohomology of the groups $GL(\mathbb{Z})$ and $SL(\mathbb{Z})$ because $H^*(BG^+; \mathbb{Z}/2) \cong H^*(G; \mathbb{Z}/2)$ for $G = GL(\mathbb{Z})$ or $SL(\mathbb{Z})$.

3. THE MOD 2 COHOMOLOGY OF THE STEINBERG GROUP $St(\mathbb{Z})$

The goal of this last section is to compute $H^*(St(\mathbb{Z}); \mathbb{Z}/2)$ by looking at the universal central extension

$$\mathbb{Z}/2 \cong K_2(\mathbb{Z}) \to St(\mathbb{Z}) \xrightarrow{\pi} SL(\mathbb{Z})$$

and at the associated Serre spectral sequence

$$E_2^{p,q} \cong H^p(SL(\mathbb{Z}); \mathbb{Z}/2) \otimes H^q(\mathbb{Z}/2; \mathbb{Z}/2) \to H^*(St(\mathbb{Z}); \mathbb{Z}/2).$$

Let us use the notation $Q_0 = Sq^1$ and $Q_r = Sq^{2r} Q_{r-1} + Q_{r-1} Sq^{2r}$ and observe that $Q_r(w_2) = Sq^{2r} Sq^{2r-1} \cdots Sq_1 w_2$ because $Sq^{2r} w_2 = 0$ for $r \geq 2$ and $Sq_1 Sq^2 w_2 = 0$.

Theorem 17. (a) There is an isomorphism of A-module Hopf algebras

$$H^*(St(\mathbb{Z}); \mathbb{Z}/2) \cong \mathbb{Z}/2[\bar{w}_2, \bar{w}_3, \ldots]/(\bar{w}_2, Q_r(\bar{w}_2), r \geq 0) \otimes \Lambda(\bar{u}_3, \bar{u}_5, \ldots),$$

where \bar{w}_k and \bar{u}_{2k-1} denote the image of w_k and u_{2k-1} under $\pi^* : H^*(SL(\mathbb{Z}); \mathbb{Z}/2) \to H^*(St(\mathbb{Z}); \mathbb{Z}/2)$.

(b) For $k \geq 2$,

$$\bar{u}_{2k-1} = \begin{cases} f_p^*(e_k) + \sum_{j=4}^{k-2} \bar{w}_j^2 \bar{u}_{2k-2j-1}, & \text{if } p \equiv 5 \text{ mod } 8, \\ f_p^*(e_k) + \bar{w}_{2k-1} + \sum_{j=4}^{k-1} \bar{w}_j \bar{w}_{2k-j-1} + \sum_{j=4}^{k-2} \bar{w}_j^2 \bar{u}_{2k-2j-1}, & \text{if } p \equiv 3 \text{ mod } 8, \end{cases}$$

where f_p^* is written here for the homomorphism $H^*(SL(\mathbb{F}_p); \mathbb{Z}/2) \to H^*(St(\mathbb{Z}); \mathbb{Z}/2)$ induced by the reduction mod $p : St(\mathbb{Z}) \to St(\mathbb{F}_p) \cong SL(\mathbb{F}_p)$.

Proof. Because $H^*(\mathbb{Z}/2; \mathbb{Z}/2) \cong \mathbb{Z}/2[z]$ with deg $z = 1$, one can compute the differentials in the above spectral sequence:

$$d_2(z) = w_2, \quad d_3(z^2) = Sq^1 d_2(z) = Sq^1 w_2 = w_3, \quad d_5(z^4) = Sq^2 d_3(z) = Sq^2 w_3$$

and inductively, $d_2r+1(z^{2r}) = d_2r+1(Q_r(z)) = Q_r d_2(z) = Q_r(w_2) = w_{2r+1}$ + (decomposable element of $\mathbb{Z}/2[w_2, w_3, \ldots]$) by Wu’s formula ([MT], Part I, p. 141). Therefore, the sequence $(w_2, Q_0(w_2), Q_1(w_2), \ldots)$ is regular and we obtain $E^\infty_{i,t} = 0$ if $t > 0$ and $E^0_{i,0} \cong H^*(SL(\mathbb{Z}); \mathbb{Z}/2)/(w_2, Q_r(w_2), r \geq 0)$. This gives the mod 2 cohomology of $St(\mathbb{Z})$ as described by statement (a) and assertion (b) follows directly from Theorem 13 and Corollary 15 since $\bar{w}_2 = \bar{w}_3 = 0$. \hfill \square

Remark 18. The above argument exhibits a surjective homomorphism from $H^*(BSL(\mathbb{Z})^+; \mathbb{Z}/2)$ to $H^*(BS\text{Spin}(\mathbb{Z})^+; \mathbb{Z}/2)$. However, it is actually possible to find a nice map from $BS\text{Spin}(\mathbb{Z})^+$ to the space $BS\text{Spin}$ inducing an injective homomorphism on mod 2 cohomology. More precisely, consider the map $\varepsilon : BSL(\mathbb{Z})^+ \to BSL(\mathbb{R})^+$ induced by the inclusion $\mathbb{Z} \hookrightarrow \mathbb{R}$ and the map $\kappa : BSL(\mathbb{R})^+ \to BSL(\mathbb{R})^\text{top} \cong BSO$ induced by the obvious map $SL(\mathbb{R}) \to SL(\mathbb{R})^\text{top}$, where the first group $SL(\mathbb{R})$ is
endowed with the discrete topology and $\text{SL}(\mathbb{R})^{\text{top}}$ with the usual topology. Then, look at the commutative diagram

$$
\begin{array}{ccc}
\text{BSO} & \xrightarrow{\tau} & \text{BSpin} \\
\text{BSL}(\mathbb{R})^+ & \xrightarrow{\beta'} & K(\pi_2\text{BSO}, 2) \\
\text{BSO} & \xrightarrow{\kappa} & \text{BSpin} \\
\text{BSL}(\mathbb{R})^+ & \xrightarrow{\beta'} & K(\pi_2\text{BSO}, 2) \\
\end{array}
$$

where the rows are fibrations in which the maps β, β', β'' are the second Postnikov sections of the corresponding spaces (BSpin is the fiber of β''), the maps $\bar{\varepsilon}$ and $\bar{\kappa}$ are the second Postnikov sections of ε and κ, and the vertical maps on the left are the restrictions of ε and κ to the fibers. The composition $\bar{\kappa} \bar{\varepsilon}$ is a homotopy equivalence because $\bar{\kappa} \bar{\varepsilon} : K_2(\mathbb{Z}) \to \pi_2\text{BSO}$ is an isomorphism (see Corollary 4.6 of [Br] or p. 25-26 of [Be]). Let us denote the composition $\varepsilon \beta$ by χ and its restriction to $\text{BSL}(\mathbb{Z})^+$ by $\bar{\chi} : \text{BSL}(\mathbb{Z})^+ \to \text{BSpin}$ (note that the 2-completion of χ is the universal cover of the map h defined in the introduction and that the fiber of the 2-completion of $\bar{\chi}$ is SU_2 because of the diagram (*)). We get the commutative diagram

$$
\begin{array}{ccc}
\mathbb{Z}/2 & \xrightarrow{\chi} & \text{BSL}(\mathbb{Z})^+ \\
\mathbb{Z}/2 & \xrightarrow{\bar{\chi}} & \text{BSpin} \\
\end{array}
$$

The ring structure of the mod 2 cohomology of BSpin is known by Proposition 6.5 of [Q1]:

$$
H^*(\text{BSpin}; \mathbb{Z}/2) \cong \mathbb{Z}/2[\bar{w}_2, \bar{w}_3, \ldots]/(\bar{w}_2, Q_r(\bar{w}_2), r \geq 0),
$$

where the \bar{w}_k's are written here for the image of the universal Stiefel-Whitney classes under the homomorphism $\tau^* : H^*(\text{BSO}; \mathbb{Z}/2) \to H^*(\text{BSpin}; \mathbb{Z}/2)$. Since $\chi^* : H^*(\text{BSO}; \mathbb{Z}/2) \to H^*(\text{BSL}(\mathbb{Z})^+; \mathbb{Z}/2)$ is injective, the map $\bar{\chi}$ induces an injective \mathcal{A}-module Hopf algebra homomorphism

$$
\bar{\chi}^* : H^*(\text{BSpin}; \mathbb{Z}/2) \to H^*(\text{BSL}(\mathbb{Z})^+; \mathbb{Z}/2).
$$

REFERENCES

Institut de Mathématiques, Université de Lausanne, 1015 Lausanne, Switzerland
E-mail address: dominique.arlettaz@ima.unil.ch

Department of Mathematics, Faculty of Science, Okayama University, Okayama, Japan 700
E-mail address: mimura@math.okayama-u.ac.jp

Institut de Mathématiques, Université de Lausanne, 1015 Lausanne, Switzerland
E-mail address: koji.nakahata@ima.unil.ch

Faculty of Education, Ibaraki University, Mito, Ibaraki, Japan
E-mail address: yagita@mito.ipc.ibaraki.ac.jp