Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The mod 2 cohomology of the linear groups
over the ring of integers


Authors: Dominique Arlettaz, Mamoru Mimura, Koji Nakahata and Nobuaki Yagita
Journal: Proc. Amer. Math. Soc. 127 (1999), 2199-2212
MSC (1991): Primary 20G10; Secondary 19D55, 20J05, 55R40, 55S10
DOI: https://doi.org/10.1090/S0002-9939-99-05183-7
Published electronically: April 8, 1999
MathSciNet review: 1646320
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper completely determines the Hopf algebra structure of the mod 2 cohomology of the linear groups $GL(\mathbb{Z})$, $SL(\mathbb{Z})$ and $St(\mathbb{Z})$ as a module over the Steenrod algebra, and provides an explicit description of the generators.


References [Enhancements On Off] (What's this?)

  • [Ar1] D. Arlettaz: Torsion classes in the cohomology of congruence subgroups, Math. Proc. Cambridge Philos. Soc. 105 (1989), 241-248. MR 90j:20097
  • [Ar2] D. Arlettaz: A note on the mod 2 cohomology of $SL(\mathbb Z)$, in: Algebraic Topology Pozna\'{n} 1989, Proceedings, Lecture Notes in Math. 1474 (1991), 365-370. MR 93g:19005
  • [Au] C. Ausoni: Propriétés homotopiques de la K-théorie algébrique des entiers, Ph.D. thesis, Université de Lausanne (1998).
  • [Be] J. Berrick: An Approach to algebraic K-theory. (Pitman, 1982). MR 84g:18028
  • [Bok] M. Bökstedt: The rational homotopy type of $\Omega \mathrm{Wh}^{\mathrm{Diff}}(*)$, in: Algebraic Topology, Aarhus 1982, Lecture Notes in Math. 1051 (1984), 25-37. MR 86e:18011
  • [Bor] A. Borel: Topics in the homology theory of fibre bundles, Lecture Notes in Math. 36 (1967). MR 36:4559
  • [Br] W. Browder: Algebraic K-theory with coefficients $\mathbb Z/p$, in: Geometric Applications of Homotopy Theory I, Evanston 1977, Lecture Notes in Math. 657 (1978), 40-84. MR 80b:18011
  • [DF] W. Dwyer and E. Friedlander: Conjectural calculations of general linear group homology, in Applications of Algebraic K-theory to Algebraic Geometry and Number Theory, Boulder 1983, Contemp. Math. 55 Part I (1986), 135-147. MR 88f:18013
  • [FP] Z. Fiedorowicz and S. Priddy: Homology of classical groups over finite fields and their associated infinite loop spaces, Lecture Notes in Math. 674 (1978). MR 80g:55018
  • [M] S. Mitchell: On the plus construction for $BGL\mathbb Z[{\frac{1}{2}}]$ at the prime 2, Math. Zeitschrift 209 (1992), 205-222. MR 93b:55021
  • [MT] M. Mimura and H. Toda: Topology of Lie groups I and II, Translations of Math. Monographs 91 (AMS 1991). MR 92h:55001
  • [Q1] D. Quillen: The mod 2 cohomology rings of extra-special 2-groups and spinor groups, Math. Ann. 194 (1971), 197-212. MR 44:7582
  • [Q2] D. Quillen: On the cohomology and K-theory of the general linear groups over a finite field, Ann. of Math. 96 (1972), 552-586. MR 47:3565
  • [RW] J. Rognes and C. Weibel: Two-primary algebraic K-theory of rings of integers in number fields, preprint (1997), http://math.uiuc.edu/K-theory/0220/.
  • [V] V. Voevodsky: The Milnor conjecture, preprint (1996), http://math.uiuc.edu/K-theory/0170/.
  • [W] C. Weibel: The 2-torsion in the K-theory of the integers, C. R. Acad. Sci. Paris Sér. I 324 (1996), 615-620. MR 98h:19001

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 20G10, 19D55, 20J05, 55R40, 55S10

Retrieve articles in all journals with MSC (1991): 20G10, 19D55, 20J05, 55R40, 55S10


Additional Information

Dominique Arlettaz
Affiliation: Institut de Mathématiques, Université de Lausanne, 1015 Lausanne, Switzerland
Email: dominique.arlettaz@ima.unil.ch

Mamoru Mimura
Affiliation: Department of Mathematics, Faculty of Science, Okayama University, Okayama, Japan 700
Email: mimura@math.okayama-u.ac.jp

Koji Nakahata
Affiliation: Institut de Mathématiques, Université de Lausanne, 1015 Lausanne, Switzerland
Email: koji.nakahata@ima.unil.ch

Nobuaki Yagita
Affiliation: Faculty of Education, Ibaraki University, Mito, Ibaraki, Japan
Email: yagita@mito.ipc.ibaraki.ac.jp

DOI: https://doi.org/10.1090/S0002-9939-99-05183-7
Received by editor(s): September 15, 1997
Published electronically: April 8, 1999
Additional Notes: We would like to thank Christian Ausoni for his helpful comments on Bökstedt’s work \cite{Bok} and the referee for his interesting suggestions. The third author thanks the Swiss National Science Foundation for financial support.
Communicated by: Ralph Cohen
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society