Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

One-to-one Borel selection theorems


Authors: Marek Balcerzak and Joanna Peredko
Journal: Proc. Amer. Math. Soc. 127 (1999), 2759-2766
MSC (1991): Primary 04A15, 28A05, 54H05
DOI: https://doi.org/10.1090/S0002-9939-99-04784-X
Published electronically: April 23, 1999
MathSciNet review: 1487357
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For $X=[0,1]$ we obtain new theorems stating that a Borel set in $X^2$ with large sets of large vertical and large horizontal sections admits a one-to-one Borel selection with large domain and large range. Largeness is meant mainly in measure or category sense. Our proofs combine a result of Graf and Mauldin with a modified result of Sarbadhikari.


References [Enhancements On Off] (What's this?)

  • [DSR] G. Debs, J. Saint Raymond, Séléctions Boréliennes injectives, Amer. J. Math., 111 (1989), 519-534. MR 90f:54060
  • [GM] S. Graf, R.D. Mauldin, Measurable one-to-one selections and transition kernels, Amer. J. Math., 107 (1985), 407-425. MR 86e:54044
  • [Ke] A.S. Kechris, Classical Descriptive Set Theory, Springer, New York 1995. MR 96e:03057
  • [Ku] K. Kuratowski, Topology I, Academic Press, New York 1966. MR 36:840
  • [M1] R.D. Mauldin, One-to-one selections-marriage theorems, Amer. J. Math., 104 (1982), 823-828. MR 84b:28013
  • [M2] R.D. Mauldin, One-to-one selections and orthogonal transition kernels, Contemp. Math., 94 (1989), 185-190. MR 90h:28001
  • [MS] R.D. Mauldin, H. Sarbadhikari, Continuous one-to-one parametrizations, Bull. Sc. Math., $2^e$ série, 105 (1981), 435-444. MR 83i:28015
  • [O] J.C. Oxtoby, Measure and Category, Springer, New York 1971. MR 52:14213
  • [S] H. Sarbadhikari, A one-to-one selection theorem, Proc. Amer. Math. Soc., 97 (1986), 320-322. MR 87f:54031
  • [W] D.H. Wagner, Survey of measurable selection theorems, Siam J. Control and Optimization, 15 (1977), 859-903. MR 58:6137

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 04A15, 28A05, 54H05

Retrieve articles in all journals with MSC (1991): 04A15, 28A05, 54H05


Additional Information

Marek Balcerzak
Affiliation: Institute of Mathematics, Łódź Technical University, al. Politechniki 11, 90-924 Łódź, Poland
Email: mbalce@krysia.uni.lodz.pl

Joanna Peredko
Affiliation: Institute of Mathematics, Łódź Technical University, al. Politechniki 11, 90-924 Łódź, Poland
Email: joannape@ck-sg.p.lodz.pl

DOI: https://doi.org/10.1090/S0002-9939-99-04784-X
Keywords: One-to-one selection, Borel set, meager set, Lebesgue null set
Received by editor(s): November 3, 1997
Published electronically: April 23, 1999
Communicated by: Frederick W. Gehring
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society