PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 127, Number 9, Pages 2797–2803 S 0002-9939(99)04839-X Article electronically published on April 15, 1999

CUT-POINT SPACES

B. HONARI AND Y. BAHRAMPOUR

(Communicated by Alan Dow)

ABSTRACT. The notion of a cut-point space is introduced as a connected topological space without any non-cut point. It is shown that a cut-point space is infinite. The non-cut point existence theorem is proved for general (not necessarily T_1) topological spaces to show that a cut-point space is non-compact. Also, the class of irreducible cut-point spaces is studied and it is shown that this class (up to homeomorphism) has exactly one member: the Khalimsky line.

1. INTRODUCTION

The real line \mathbf{R} is a source of intuition in topology. Many other familiar topological spaces can be obtained from \mathbf{R} by topological constructions. It has the following properties:

(a) it is connected but the removal of any one of its points leaves it disconnected;

(b) it is metrizable;

(c) its topology can be generated by a linear ordering.

Conversely, it can be proved that every topological space with the above properties is homeomorphic to \mathbf{R} . Conditions (b) and (c) are too strong. They impose structures on the topological space, so this characterization of \mathbf{R} seems somehow extrinsic.

In this paper we study the topological spaces that satisfy condition (a), and call them cut-point spaces. In section 2, a cut-point space is defined again formally and some examples are given. In section 3, it is shown that every cut-point space has an infinite number of closed points. Also, it is proved that every cut-point space is non-compact. To prove the latter, we need the most general form of the non-cut point existence theorem. The special case of this theorem for metric topological spaces is proved in [4]. A proof of the theorem for T_1 topological spaces can be found in [1] (see also [5]). In Section 4, an irreducible cut-point space is defined naturally as a cut-point space whose proper subsets are not cut-point spaces. It is shown that an irreducible cut-point space is necessarily homeomorphic to the Khalimsky line (see Example 2.5 for the definition of the Khalimsky line). This result may also be viewed as a straightforward characterization of the Khalimsky line. Objects in *n*-dimensional digital images have sometimes been regarded as subspaces of the product of *n* copies of the Khalimsky line [2], [3].

©1999 American Mathematical Society

Received by the editors March 3, 1997 and, in revised form, November 20, 1997.

¹⁹⁹¹ Mathematics Subject Classification. Primary 54F15, 54F65.

Key words and phrases. Continuum, cut-point space, cut point, non-cut point existence theorem, irreducible cut-point space, Khalimsky line.

Remark. Let X be a topological space and let $Y \subseteq X$. Everywhere in this paper, the topology of Y is the subspace topology. A point $x \in X$ is said to be closed (resp. open) if $\{x\}$ is a closed (resp. open) subset of X.

2. Definitions and examples

2.1. Definition. Let X be a nonempty connected topological space. A point xin X is said to be a *cut point* of X if $X \setminus \{x\}$ is a disconnected subset of X. A nonempty connected topological space X is said to be a *cut-point space* if every xin X is a cut point of X.

In the following three examples, \mathbf{R}^2 is the Euclidean plane with the standard topology.

2.2. Example. The union of *n* straight lines in \mathbb{R}^2 is a cut-point space if and only if either all of them are concurrent or exactly n-1 of them are parallel.

2.3. Example. Let $X_1 = \{(x, y) \in \mathbf{R}^2 : x \leq 0 \text{ and } |y| = 1\}$ and let $X_2 = \{(x, y) \in \mathbf{R}^2 : x > 0 \text{ and } y = \sin \frac{1}{x}\}$. Define $X = X_1 \cup X_2$. Then X is a cut-point space. For each $x \in X$, $X \setminus \{x\}$ has exactly two components.

A "connected ordered topological space" (COTS) is a connected topological space X with the following property: if Y is a three-point subset of X, there is a y in Y such that Y meets two connected components of $X \setminus \{y\}$ (see [2]). Put $Y = \{(0, -1), (1, \sin 1), (0, 1)\}$ in Example 2.3 to see that X is not a COTS.

2.4. Example. Let $X_0 = \{(x, 0) \in \mathbf{R}^2 : x \leq 0\} \cup \{(x, 1) \in \mathbf{R}^2 : x > 0\}$ and let for each positive integer $n, Y_n = \{(\frac{1}{n}, y) \in \mathbf{R}^2 : 0 < y \le 1\}$. Define $X = X_0 \cup (\bigcup_{i=1}^{\infty} Y_n)$.

Then X is a cut-point space.

A connected topological space is said to have the "connected intersection prop-

erty" if the intersection of every two connected subsets of it is connected. In Example 2.4, let $X_1 = X_0 \cup (\bigcup_{n=1}^{\infty} Y_{2n-1})$ and $X_2 = X_0 \cup (\bigcup_{n=1}^{\infty} Y_{2n})$. Since $X_1 \cap X_2 = X_0$ is not connected, X does not possess the connected intersection property. Example 2.4 is a slightly modified version of an example in [6].

2.5. Example (The Khalimsky line). Let Z be the set of integers and let

 $\mathcal{B} = \{\{2i-1, 2i, 2i+1\} : i \in \mathbf{Z}\} \cup \{\{2i+1\} : i \in \mathbf{Z}\}.$

Then \mathcal{B} is a base for a topology on **Z**. The set **Z** with this topology is a cutpoint space and is called the *Khalimsky line*. Each point in \mathbf{Z} has a smallest open neighborhood and the base \mathcal{B} is the collection of all such neighborhoods. It can be easily seen that the Khalimsky line is irreducible in the sense that no proper subset of it is a cut-point space.

3. TOPOLOGICAL PROPERTIES OF CUT-POINT SPACES

Theorem 3.2 is the key theorem of this section. The main theorem of this section is Theorem 3.9 which implies the non-compactness of cut-point spaces. Notation 3.1 is adopted from [5].

3.1. Notation. Let Y be a topological space. We write Y = A|B to mean A and B are two nonempty subsets of Y such that $Y = A \cup B$ and $A \cap \overline{B} = \overline{A} \cap B = \emptyset$.

3.2. Theorem. Let X be a connected topological space, and let x be a cut point of X such that $X \setminus \{x\} = A \mid B$. Then $\{x\}$ is open or closed. If $\{x\}$ is open, then A and B are closed; if $\{x\}$ is closed, then A and B are open.

Proof. Since A is both open and closed in $X \setminus \{x\}$, there is an open subset V of X such that $A = V \cap (X \setminus \{x\}) = V \setminus \{x\}$, and there is a closed subset F of X such that $A = F \cap (X \setminus \{x\}) = F \setminus \{x\}$. Thus $A = V \setminus \{x\} = F \setminus \{x\}$. Since the assumption V = F contradicts the connectedness of X, we have $\{x\} = V \setminus F$ or $\{x\} = F \setminus V$. If $\{x\} = V \setminus F$, then $\{x\}$ is open and A = F is closed. If $\{x\} = F \setminus V$, then $\{x\}$ is closed and A = V is open.

3.3. Corollary. Let X be a connected topological space, and let Y be the subset of all cut points of X. Then the following statements are obviously true.

- (a) Every nonempty connected subset of Y that is not a singleton, contains at least one closed point.
- (b) If $x \in Y$ is open, then every limit point of $\{x\}$ in Y is a closed point.

3.4. Lemma. Let X be a connected topological space, and let x be a cut point of it. If $X \setminus \{x\} = A | B$, then $A \cup \{x\}$ is connected.

Proof. If $A \cup \{x\}$ is not connected, then there are subsets C and D of X such that $A \cup \{x\} = C | D$. Without loss of generality, we may assume that $x \in C$. Then $D \subseteq A$. Since $\overline{(B \cup C)} \cap D = (\overline{B} \cap D) \cup (\overline{C} \cap D) = \overline{B} \cap D \subseteq \overline{B} \cap A = \emptyset$, $\overline{(B \cup C)} \cap D = \emptyset$. Since $(B \cup C) \cap \overline{D} = (B \cap \overline{D}) \cup (C \cap \overline{D}) = (B \cap \overline{D}) \subseteq B \cap \overline{A} = \emptyset$, $(B \cup C) \cap \overline{D} = \emptyset$. Therefore $X = (B \cup C) | D$. This contradicts the connectedness of X.

3.5. Lemma. Let X be a connected topological space and let x be a cut point of it. If $X \setminus \{x\} = A \mid B$ and if every point of A is a cut point of X, then A contains at least one closed point.

Proof. Suppose that A consists exclusively of open points. Since, by Lemma 3.4, $A \cup \{x\}$ is connected, $\{x\}$ is closed and hence (by Theorem 3.2) $A \cup \{x\}$ is closed too. Thus, for every $y \in A$, $\overline{\{y\}} \subseteq A \cup \{x\}$, and therefore, by Corollary 3.3 (b), x is the only possible limit point of $\{y\}$. As $\{y\}$ has a limit point (since $\{y\}$ is open and X is connected), x is a limit point of $\{y\}$. This implies that $\{x, y\}$ is connected for any $y \in A$. Let $y_0 \in A$. Since $B \cup \{x\}$ is connected by Lemma 3.4,

$$X \setminus \{y_0\} = \bigcup_{y \in A, y \neq y_0} \{x, y\} \cup (B \cup \{x\})$$

is connected too. This contradicts the fact that y_0 is a cut point of X.

3.6. Lemma. Let X be a connected topological space, and let x and y be two cut points of it such that $X \setminus \{x\} = A \mid B$ and $X \setminus \{y\} = C \mid D$. If $x \in C$ and $y \in A$, then $D \subseteq A$ and $B \subseteq C$.

Proof. Since $D \cup \{y\}$ is connected by Lemma 3.4, and since $D \cup \{y\} \subseteq X \setminus \{x\}$, we have $D \cup \{y\} \subseteq A$ or $D \cup \{y\} \subseteq B$. Since $y \in A$, the second inclusion is not true. Hence $D \subseteq A$. A similar argument shows that $B \subseteq C$.

In the next theorem, we show that a finite topological space cannot be a cut-point space.

3.7. Theorem. Let X be a cut-point space. Then the set of closed points of X is infinite.

Proof. By mathematical induction, we construct a sequence x_1, x_2, \cdots of distinct closed points in X. Define $C_0 = X$. By Corollary 3.3 (a), there exists a closed point x_1 in C_0 . Since x_1 is a cut point of X, there are open subsets C_1 and D_1 of X such that $X \setminus \{x_1\} = C_1 | D_1$. Now, suppose that the distinct closed points x_1, x_2, \cdots, x_n in X and the open subsets $C_1, \cdots, C_n, D_1, \cdots, D_n$ of X are chosen such that $X \setminus \{x_i\} = C_i | D_i, x_i \in C_{i-1}$ and $C_{i-1} \supseteq C_i$ for each $i, 1 \le i \le n$. According to Lemma 3.5, there is a closed point $x_{n+1} \in C_n$. There are open subsets C_{n+1} and D_{n+1} of X such that $X \setminus \{x_{n+1}\} = C_{n+1} | D_{n+1}$. By interchanging C_{n+1} and D_{n+1} , if necessary, we may assume that $x_n \in D_{n+1}$. Thus, by Lemma 3.6, $C_n \supseteq C_{n+1}$. Since $x_i \notin C_i, x_i \notin C_n$ for any $i, 1 \le i \le n$. The fact that $x_{n+1} \in C_n$ implies that x_{n+1} is different from x_1, \cdots, x_n .

3.8. Corollary. Let X be a cut-point space. Then $|X| = \infty$.

Of course, Theorem 3.7 is a generalization of Corollary 3.8. Using the Hausdorff Maximal Principle, we prove another generalization of Corollary 3.8 in the following theorem.

3.9. Theorem. Let X be a compact connected topological space with more than one point. Then X has at least two non-cut points.

Proof. Suppose that X has at most one non-cut point. Let x_0 be a cut point of X and let $X \setminus \{x_0\} = A_0 | B_0$. Since X has at most one non-cut point, either A_0 or B_0 (without loss of generality assume A_0) exclusively consists of cut points. By Lemma 3.5, A_0 contains some closed cut point of X, say x. Let $X \setminus \{x\} = A | B$ and without loss of generality assume that $x_0 \in B$. Then by Lemma 3.6, $A \subseteq A_0$. Define $S = \{U : U \text{ is an open subset of } X, U \supseteq B, \overline{U} \setminus U \text{ is a singleton, and } \overline{U} \neq X \}$. Since B is open and $\overline{B} = B \cup \{x\}, B \in S$. For each $U_\alpha \in S$ and $U_\beta \in S$, write $U_\alpha \leq U_\beta$ if $U_\alpha = U_\beta$, or if $\overline{U}_\alpha \subseteq U_\beta$. (S, \leq) is clearly a partially ordered set, and by the Hausdorff Maximal Principle there is a maximal chain C in S. Let $U_\alpha \in S$, and let $\{x_\alpha\} = \overline{U}_\alpha \setminus U_\alpha$. Since $X \setminus \{y\} = C | D$. Since \overline{U}_α is connected by Lemma 3.4, $\overline{U}_\alpha \subseteq C$ or $\overline{U}_\alpha \subseteq D$, i.e. $U_\alpha < C$ or $U_\alpha < D$. Since U_α was arbitrary in S, S (and consequently C) does not have a maximal element. Thus $\bigcup_{U \in C} U = \bigcup_{U \in C} \overline{U}$. Write

 $V = \bigcup_{U \in \mathcal{C}} U$. Since \overline{U} is connected for each $U \in \mathcal{S}$, V is connected too. We claim

that V = X. Suppose otherwise. Then $X \setminus V$ is a nonempty closed subset of X. Since $X \setminus V \subseteq A$, every point in $X \setminus V$ is a cut point of X and is either open or closed by Theorem 3.2. As $X \setminus V$ is not open (it is closed and X is connected), the points of $X \setminus V$ cannot all be open, and so there is a closed cut point x' in $X \setminus V$. Let $X \setminus \{x'\} = G \mid H$. Since V is connected, $V \subseteq G$ or $V \subseteq H$. Assume (without loss of generality) that $V \subseteq G$. Since $G \in S, U \leq G$ for any $U \in C$. Since C does not have a maximal element, $G \notin C$. This contradicts the maximality of the chain C. Hence V = X, and therefore C is an infinite open covering of X. Since C is a chain without a maximal element, there is no finite subcovering of C for X. This contradicts the compactness of X.

3.10. Corollary. Let X be a cut-point space. Then X is non-compact.

CUT-POINT SPACES

4. IRREDUCIBLE CUT-POINT SPACES AND CHARACTERIZATION OF THE KHALIMSKY LINE

In this section, we define an irreducible cut-point space and we show that it is necessarily homeomorphic to the Khalimsky line (see Example 2.5).

4.1. Definition. A cut-point space is said to be an *irreducible cut-point space* if no proper subset of it (with the subspace topology) is a cut-point space.

4.2. Lemma. Let X be a cut-point space, let $x \in X$, and let $X \setminus \{x\} = A | B$. If A is not connected, then $A \cup \{x\}$ is a cut-point space.

Proof. Put $Y = A \cup \{x\}$. Clearly x is a cut point of Y. Let y be an arbitrary point in A. Since $X \setminus \{y\} = (Y \setminus \{y\}) \cup (B \cup \{x\})$ is not connected, and since $x \in (Y \setminus \{y\}) \cap (B \cup \{x\})$, either $Y \setminus \{y\}$ or $B \cup \{x\}$ is disconnected. By Lemma 3.4, $B \cup \{x\}$ is connected. Thus $Y \setminus \{y\}$ is disconnected. \Box

4.3. Corollary. If X is an irreducible cut-point space, then, for every $x \in X$, $X \setminus \{x\}$ has exactly two components.

Proof. Let $X \setminus \{x\} = A \mid B$. Since X is irreducible, $A \cup \{x\}$ and $B \cup \{x\}$ are not cut-point spaces. Thus, by Lemma 4.2, A and B are connected.

4.4. Lemma. Let X be an irreducible cut-point space, let $x \in X$ and let $X \setminus \{x\} = A \mid B$. Then there are exactly two points $y \in A$ and $z \in B$ such that $\{x, y\}$ and $\{x, z\}$ are connected. Furthermore if x is closed then y and z are open, and if x is open then y and z are closed.

Proof. Since, by Corollary 4.3, A is connected and since X is an irreducible cutpoint space, A has a non-cut point y; i.e. $A \setminus \{y\}$ is connected. We claim that y is the unique point in A such that $\{x, y\}$ is connected. First we prove that if $\{x, y'\}$ is connected for some $y' \in A$, then y' = y. Let y' be a point in A such that $\{x, y'\}$ is connected. Suppose that $y' \neq y$. Since, by Lemma 3.4, $B \cup \{x\}$ is connected, and since $X \setminus \{y\} = (A \setminus \{y\}) \cup (B \cup \{x\})$, the connectedness of $\{x, y'\}$ implies the connectedness of $X \setminus \{y\}$ (a contradiction). To prove that $\{x, y\}$ is connected we consider two cases.

(1) x is closed. In this case, A is (open and) not closed but $A \cup \{x\}$ is closed (both by Theorem 3.2). Thus x is a limit point of A. On the other hand, since $X \setminus \{y\} = (A \setminus \{y\}) \cup (B \cup \{x\})$ is not connected, x is not a limit point of $A \setminus \{y\}$. Hence x is a limit point of $\{y\}$.

(2) x is open. In this case, A is (closed and) not open but $A \cup \{x\}$ is open (both by Theorem 3.2). Thus there is a point y' in A which is not an interior point of A. Since y' is an interior point of $A \cup \{x\}$, y' is a limit point of $\{x\}$. Hence $\{x, y'\}$ is connected. Since, as we proved above, y' = y, $\{x, y\}$ is connected.

A similar argument shows that there is a unique point z in B such that $\{x, z\}$ is connected. The last statement of the lemma is implied by Theorem 3.2 and the connectedness of $\{x, y\}$ and $\{x, z\}$.

4.5. Theorem. A topological space X is an irreducible cut-point space if and only if X is homeomorphic to the "Khalimsky line".

Proof. It can be easily seen that the Khalimsky line is an irreducible cut-point space. Let X be an irreducible cut-point space. By mathematical induction, we find a subset Y of X that is homeomorphic to the Khalimsky line, and then, by

2801

irreducibility of X, we conclude that X = Y. Let x_0 be a closed point in X, and let $X \setminus \{x_0\} = A_0 | B_0$. By Lemma 4.4 there are points x_{-1} in A_0 and x_1 in B_0 such that $\{x_{-1}, x_0\}$ and $\{x_0, x_1\}$ are connected. Define $Y_1 = \{x_{-1}, x_0, x_1\}$. Let A_1 be the component of $X \setminus \{x_1\}$ that contains x_0 and let B_1 be the other component of $X \setminus \{x_1\}$. Let B_{-1} be the component of $X \setminus \{x_{-1}\}$ that contains x_0 and let A_{-1} be the other component of $X \setminus \{x_{-1}\}$. Assume that for an arbitrary positive integer n, the subset $Y_n = \{x_i : i \in \mathbb{Z} \text{ and } -n \leq i \leq n\}$ of X (with 2n + 1 points) is chosen such that for each i and j which satisfy $-n \leq i, j \leq n$ and |i - j| = 1, $\{x_i, x_j\}$ is connected. Moreover, assume that for each nonzero $i, -n \leq i \leq n$, the components A_i and B_i of $X \setminus \{x_n\}$ are chosen such that $x_0 \in A_i$ if i is positive, and $x_0 \in B_i$ if i is negative. Since $Y_n \setminus \{x_{-n}\} = \bigcup_{-n < i < j \leq n, j = i+1} \{x_i, x_j\}$ is connected,

it is a subset of A_{-n} or B_{-n} , and since $x_0 \notin A_{-n}$, $Y_n \setminus \{x_{-n}\} \subseteq B_{-n}$. By Lemma 4.4 there is a unique point x_{-n-1} in A_{-n} such that $\{x_{-n-1}, x_{-n}\}$ is connected. Since $(Y_n \cup \{x_{-n-1}\}) \setminus \{x_n\} = \bigcup_{\substack{-n-1 \leq i < j < n, j = i+1 \\ 0 \neq B_n, (Y_n \cup \{x_{-n-1}\}) \setminus \{x_n\} \subseteq A_n$. By Lemma 4.4

of A_n or B_n , and since $x_0 \notin B_n$, $(Y_n \cup \{x_{-n-1}\}) \setminus \{x_n\} \subseteq A_n$. By Lemma 4.4 there is a unique point x_{n+1} in B_n such that $\{x_n, x_{n+1}\}$ is connected. Thus we obtain a subset $Y_{n+1} = \{x_i : i \in \mathbb{Z} \text{ and } -(n+1) \leq i \leq n+1\}$ of X (with 2n+3points) such that for each i and j which satisfy $-(n+1) \leq i, j \leq n+1$ and $|i-j| = 1, \{x_i, x_j\}$ is connected. To complete the induction step, we define the subsets $A_{-n-1}, B_{-n-1}, A_{n+1}, B_{n+1}$ of X such that $X \setminus \{x_{-n-1}\} = A_{-n-1}|B_{-n-1}, X \setminus \{x_{n+1}\} = A_{n+1}|B_{n+1}, x_0 \in B_{-n-1}$ and $x_0 \in A_{n+1}$. Put

$$Y = \bigcup_{n=1}^{\infty} Y_n = \{x_i : i \in \mathbf{Z}\}.$$

It can be easily seen that for each integer $i, Y \cap A_i = \{x_j : j < i\}$ and $Y \cap B_i = \{x_j : j > i\}$. Since x_0 is closed, (by iterated application of Lemma 4.4) x_n is closed if n is even, and x_n is open if n is odd. Clearly, for each $i \in \mathbb{Z}$, the smallest open neighborhood of x_{2i+1} in Y is $\{x_{2i+1}\}$. Since for each $i \in \mathbb{Z}$, x_{2i} is a limit point of $\{x_{2i-1}\}$ and $\{x_{2i+1}\}$, every open neighborhood of x_{2i-2} in X (and hence in Y) contains x_{2i-1} and x_{2i+1} . On the other hand, since x_{2i-2} and x_{2i+2} are closed, B_{2i-2} and A_{2i+2} are open in X. Thus $\{x_{2i-1}, x_{2i}, x_{2i+1}\} = (Y \cap B_{2i-2}) \cap (Y \cap A_{2i+2})$ is the smallest open neighborhood of x_{2i} in Y. Hence

$$\mathcal{B}' = \{\{x_{2i-1}, x_{2i}, x_{2i+1}\} : i \in \mathbf{Z}\} \cup \{\{x_{2i+1}\} : i \in \mathbf{Z}\}$$

is a base for the topology of Y. Comparing this base with the base of the Khalimsky line in Example 2.5, we see that Y is homeomorphic to the Khalimsky line. \Box

References

- [1] J. G. Hocking, G.S. Young, Topology, Addison-Wesley (1961). MR 23:A2857
- [2] E.D. Khalimsky, R. Kopperman, P.R. Meyer, "Computer graphics and connected topologies on finite ordered sets", *Topology and its Applications*, **36** (1990) 1-17. MR **92c:**54037
- [3] R. Kopperman, "The Khalimsky line in digital topology", in Y.-L. O et al., eds., Shape in Picture: Mathematical Description of Shape in Grey-Level Images, Springer-Verlag (1994) 3-20.
- [4] R. L. Moore, "Concerning simple continuous curves", Trans. Amer. Math. Soc., 21 (1920) 333-347.

CUT-POINT SPACES

- [5] S. B. Nadler, Jr., Continuum Theory: An Introduction, Marcel Dekker (1992). MR 93m:54002
- [6] G.T. Whyburn, "Cut points in general topological spaces", Proc. Nat. Acad. Sci., USA, 61 (1968) 380-387. MR 39:3463

Faculty of Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran E-mail address: honari@arg3.uk.ac.ir

E-mail address: bahram@arg3.uk.ac.ir