Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Identities of incomplete Kloosterman sums


Author: Ye Yangbo
Journal: Proc. Amer. Math. Soc. 127 (1999), 2591-2600
MSC (1991): Primary 11L05; Secondary 11F70
DOI: https://doi.org/10.1090/S0002-9939-99-05037-6
Published electronically: April 9, 1999
MathSciNet review: 1623001
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Identities between incomplete Kloosterman sums and incomplete hyper-Kloosterman sums are established.


References [Enhancements On Off] (What's this?)

  • [1] D. Bump, W. Duke, J. Hoffstein, and H. Iwaniec, An estimate for the Hecke eigenvalues of Maass forms, Inter. Math. Res. Notices, 4 (1992), 75-81. MR 93d:11047
  • [2] H. Davenport and H. Hasse, Die Nullstellen der Kongruenzzetafunktionen in gewissen zyklischen Fällen, J. reine angew. Math., 172 (1935), 151-182.
  • [3] H. Jacquet and Y. Ye, Relative Kloosterman integrals for $GL(3)$, Bulletin de la Société mathématique de France, 120 (1992), 263-295. MR 94c:11047
  • [4] W. Luo, Bounds for incomplete hyper-Kloosterman sums, preprint.
  • [5] W. Luo, Z. Rudnick, and P. Sarnak, On Selberg's eigenvalue conjecture, Geom. Funct. Anal., 5 (1995), 387-401. MR 96h:11045
  • [6] Z. Mao and S. Rallis, A trace formula for dual pairs, Duke Math. J., 87 (1997), 321-341. CMP 97:11
  • [7] Y. Ye, Kloosterman integrals and base change for $GL(2)$, J. reine angew. Math. 400 (1989), 57-121. MR 90i:11134
  • [8] Y. Ye, The lifting of Kloosterman sums, J. Number Theory, 51 (1995), 275-287. MR 97a:11126
  • [9] Y. Ye, The lifting of an exponential sum to a cyclic algebraic number field of a prime degree, Transactions Amer. Math. Soc. 350 (1998), 5003-5015. CMP 97:08
  • [10] Y. Ye, Exponential sums for $GL(n)$ and their applications to base change, J. Number Theory 68 (1998), 112-130. CMP 98:07
  • [11] D. Zagier, Modular forms associated to real quadratic fields, Invent. Math. 30 (1975), 1-46. MR 52:3062

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 11L05, 11F70

Retrieve articles in all journals with MSC (1991): 11L05, 11F70


Additional Information

Ye Yangbo
Affiliation: Department of Mathematics, The University of Iowa, Iowa City, Iowa 52242-1419
Address at time of publication: Department of Mathematics, The University of Hong Kong, Hong Kong
Email: yey@math.uiowa.edu

DOI: https://doi.org/10.1090/S0002-9939-99-05037-6
Received by editor(s): November 18, 1997
Published electronically: April 9, 1999
Additional Notes: The author was supported in part by NSF Grant #DMS 97-01225.
Communicated by: Dennis A. Hejhal
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society