Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Fundamental theorem of geometry
without the 1-to-1 assumption


Authors: Alexander Chubarev and Iosif Pinelis
Journal: Proc. Amer. Math. Soc. 127 (1999), 2735-2744
MSC (1991): Primary 51A15; Secondary 51A05, 51A45, 51A25, 51D15, 51D30, 51E15, 51N10, 51N15, 14P99, 05B25
Published electronically: April 23, 1999
MathSciNet review: 1657778
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that any mapping of an $n$-dimensional affine space over a division ring $\mathbb{D}$ onto itself which maps every line into a line is semi-affine, if $n\in \{2,3,\dots \}$ and $\mathbb{D}\ne \mathbb{Z}_{2}$. This result seems to be new even for the real affine spaces. Some further generalizations are also given. The paper is self-contained, modulo some basic terms and elementary facts concerning linear spaces and also - if the reader is interested in $\mathbb{D}$ other than $\mathbb{R}$, $\mathbb{Z}_{p}$, or $\mathbb{C}$ - division rings.


References [Enhancements On Off] (What's this?)

  • 1. E. Artin, Geometric algebra, Interscience Publishers, Inc., New York-London, 1957. MR 0082463
  • 2. Walter Benz, Geometrische Transformationen, Bibliographisches Institut, Mannheim, 1992 (German). Unter besonderer Berücksichtigung der Lorentztransformationen. [With special reference to the Lorentz transformations]. MR 1183223
  • 3. Marcel Berger, Geometry. I, Universitext, Springer-Verlag, Berlin, 1987. Translated from the French by M. Cole and S. Levy. MR 882541
  • 4. H. S. M. Coxeter, The Real Projective Plane, McGraw-Hill Book Company, Inc., New York, N. Y., 1949. MR 0030205
  • 5. J. Frenkel, Géométrie pour l'élève-professeur, Hermann, Paris, 1973.
  • 6. Loo Keng Hua, Selected papers, Springer-Verlag, New York-Berlin, 1983. Edited and with an introduction by H. Halberstam. MR 683454
  • 7. June A. Lester, Distance preserving transformations, Handbook of incidence geometry, North-Holland, Amsterdam, 1995, pp. 921–944. MR 1360731, 10.1016/B978-044488355-1/50018-9
  • 8. A. I. Mal′cev, Osnovy Lineĭnoĭ Algebry, OGIZ, Moscow-Leningrad,], 1948 (Russian). MR 0033268
  • 9. Bernard R. McDonald, Geometric algebra over local rings, Marcel Dekker, Inc., New York-Basel, 1976. Pure and Applied Mathematics, No. 36. MR 0476639

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 51A15, 51A05, 51A45, 51A25, 51D15, 51D30, 51E15, 51N10, 51N15, 14P99, 05B25

Retrieve articles in all journals with MSC (1991): 51A15, 51A05, 51A45, 51A25, 51D15, 51D30, 51E15, 51N10, 51N15, 14P99, 05B25


Additional Information

Alexander Chubarev
Affiliation: Cimatron Ltd., Gush Etzion 11, Givat Shmuel, 54030, Israel
Email: sasha@cimatron.co.il

Iosif Pinelis
Affiliation: Department of Mathematical Sciences, Michigan Technological University, Hough- ton, Michigan 49931
Email: ipinelis@math.mtu.edu

DOI: http://dx.doi.org/10.1090/S0002-9939-99-05280-6
Keywords: Fundamental theorem of geometry, affine space, affine transformation, semi-affine transformation, collineation, isomorphism, parallelism, incidence relations, projective transformation
Received by editor(s): June 21, 1996
Published electronically: April 23, 1999
Communicated by: Christopher Croke
Article copyright: © Copyright 1999 American Mathematical Society