Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Fundamental theorem of geometry
without the 1-to-1 assumption


Authors: Alexander Chubarev and Iosif Pinelis
Journal: Proc. Amer. Math. Soc. 127 (1999), 2735-2744
MSC (1991): Primary 51A15; Secondary 51A05, 51A45, 51A25, 51D15, 51D30, 51E15, 51N10, 51N15, 14P99, 05B25
DOI: https://doi.org/10.1090/S0002-9939-99-05280-6
Published electronically: April 23, 1999
MathSciNet review: 1657778
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that any mapping of an $n$-dimensional affine space over a division ring $\mathbb{D}$ onto itself which maps every line into a line is semi-affine, if $n\in \{2,3,\dots \}$ and $\mathbb{D}\ne \mathbb{Z}_{2}$. This result seems to be new even for the real affine spaces. Some further generalizations are also given. The paper is self-contained, modulo some basic terms and elementary facts concerning linear spaces and also - if the reader is interested in $\mathbb{D}$ other than $\mathbb{R}$, $\mathbb{Z}_{p}$, or $\mathbb{C}$ - division rings.


References [Enhancements On Off] (What's this?)

  • 1. E. Artin, Geometric Algebra, Interscience Publishers, New York, 1957. MR 18:553e
  • 2. W. Benz, Geometrische Transformationen unter besonderer Berücksichtigung der Lorentztransformationen, BI-Wissenschaftsverlag, Mannheim, 1992. MR 93i:51002
  • 3. M. Berger, Geometry I, 1994 Corrected Second Printing, Springer, New York, 1987. MR 88a:51001a
  • 4. H. S. M. Coxeter, The Real Projective Plane, McGraw-Hill, New York, 1949. MR 10:729b
  • 5. J. Frenkel, Géométrie pour l'élève-professeur, Hermann, Paris, 1973.
  • 6. Loo-keng Hua, A theorem on matrices over sfield and its applications, Loo-keng Hua Selected Papers, Springer, New York, 1983, pp. 528-581. MR 84m:01045
  • 7. J. A. Lester, Distance preserving transformations, Handbook of Incidence Geometry, North-Holland, Amsterdam, 1995, pp. 921-944. MR 96j:51019
  • 8. A. I. Mal'tsev, Foundations of Linear Algebra, 4th ed., Nauka, Moscow, 1975. MR 11:412h (1948 edition)
  • 9. B. R. McDonald, Geometric Algebra over Local Rings, Marcel Dekker, New York, 1976. MR 57:16198

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 51A15, 51A05, 51A45, 51A25, 51D15, 51D30, 51E15, 51N10, 51N15, 14P99, 05B25

Retrieve articles in all journals with MSC (1991): 51A15, 51A05, 51A45, 51A25, 51D15, 51D30, 51E15, 51N10, 51N15, 14P99, 05B25


Additional Information

Alexander Chubarev
Affiliation: Cimatron Ltd., Gush Etzion 11, Givat Shmuel, 54030, Israel
Email: sasha@cimatron.co.il

Iosif Pinelis
Affiliation: Department of Mathematical Sciences, Michigan Technological University, Hough- ton, Michigan 49931
Email: ipinelis@math.mtu.edu

DOI: https://doi.org/10.1090/S0002-9939-99-05280-6
Keywords: Fundamental theorem of geometry, affine space, affine transformation, semi-affine transformation, collineation, isomorphism, parallelism, incidence relations, projective transformation
Received by editor(s): June 21, 1996
Published electronically: April 23, 1999
Communicated by: Christopher Croke
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society