ON THE SEMISIMPLICITY OF PURE SHEAVES

LEI FU

Abstract. We obtain a criteria for a pure sheaf to be semisimple. As a corollary, we prove the following: Let X_0 and S_0 be two schemes over a finite field \mathbb{F}_q, and let $f_0 : X_0 \to S_0$ be a proper smooth morphism. Assume S_0 is normal and geometrically connected, and assume there exists a closed point s in S_0 such that the Frobenius automorphism F_s acts semisimply on $H^i(X_{\bar{s}}, Q_l)$, where $X_{\bar{s}}$ is the geometric fiber of f_0 at s (this last assumption is unnecessary if the semisimplicity conjecture is true). Then $R^i f_{0*} Q_l$ is a semisimple sheaf on S_0. This verifies a conjecture of Grothendieck and Serre provided the semisimplicity conjecture holds. As an application, we prove that the galois representations of function fields associated to the l-adic cohomologies of $K3$ surfaces are semisimple. We also get a theorem of Zarhin about the semisimplicity of the Galois representations of function fields arising from abelian varieties.

The proof relies heavily on Deligne's work on Weil conjectures.

1. Introduction

Let \mathbb{F}_q be a finite field with q elements. Choose an algebraic closure \mathbb{F} of \mathbb{F}_q. Throughout this paper, schemes, morphisms and sheaves defined on the base field \mathbb{F}_q are denoted by letters with subscripts 0 and we indicate the base extension from \mathbb{F}_q to \mathbb{F} by dropping the subscripts 0. Schemes and morphisms are separated and of finite type.

Let X_0 be a scheme over \mathbb{F}_q, let \mathcal{F}_0 be a constructible \overline{Q}_l-sheaf on X_0, and let $\iota : \overline{Q}_l \to \mathbb{C}$ be an isomorphism. Recall that \mathcal{F}_0 is called ι-pure with weight w if for every closed point x of X_0 and for every eigenvalue λ of the (geometric) Frobenius automorphism F_x on \mathcal{F}_x, the absolute value of $\iota(\lambda)$ is $N(x)^{w/2}$, where $N(x)$ is the number of elements of the residue field $k(x)$. Also recall that giving a lisse \overline{Q}_l-sheaf on a connected scheme is the same as giving a \overline{Q}_l-representation of the fundamental group of the scheme. So we can talk about the irreducibility and semisimplicity of a lisse sheaf.

If X_0 is a normal geometrically connected scheme over \mathbb{F}_q and if \mathcal{F}_0 is a ι-pure lisse \overline{Q}_l-sheaf on X_0, then by a theorem of Deligne ([D1], 3.4.1 (iii)), \mathcal{F} is a semisimple sheaf on X. In this paper, based on Deligne's work, we prove the following:

Theorem. Let X_0 be a normal geometrically connected scheme of finite type over \mathbb{F}_q and let \mathcal{F}_0 be a ι-pure lisse \overline{Q}_l-sheaf on X_0. If there exists a closed point x of...
such that the Frobenius automorphism F_x on \mathcal{F}_x is semisimple, then \mathcal{F}_0 is a semisimple sheaf on X_0.

Here a linear transformation on a vector space is said to be semisimple if the corresponding matrix is diagonalizable.

Corollary. Let X_0 and S_0 be two schemes over the finite field \mathbb{F}_q, and let $f_0 : X_0 \to S_0$ be a proper smooth morphism. Assume S_0 is normal and geometrically connected, and assume there exists a closed point s in S_0 such that the Frobenius automorphism F_s acts semisimply on $H^i(X_{\overline{s}}, \mathbb{Q}_l)$, where $X_{\overline{s}} = X_0 \otimes_{k(s)} \overline{k(s)}$ is the geometric fiber of f_0 at \overline{s}. Then $R^if_0_*, \mathbb{Q}_l$ is a semisimple sheaf on S_0.

Proof. By the proper and smooth base change theorem, we know $R^if_0_*, \mathbb{Q}_l$ is lisse. By Deligne’s theorem (i.e. Weil’s conjecture), $R^if_0_*, \mathbb{Q}_l$ is pure. By assumption, F_s acts semisimply on $(R^if_*, \mathbb{Q}_l)_{\overline{s}} = H^i(X_{\overline{s}}, \mathbb{Q}_l)$. So by the theorem, $R^if_0_*, \mathbb{Q}_l$ is a semisimple sheaf on S_0.

The semisimplicity conjecture states that for any proper smooth scheme X_0 over \mathbb{F}_q, the geometric Frobenius correspondence F acts semisimply on $H^i(X, \mathbb{Q}_l)$. If this conjecture is true, then in the above corollary, we don’t need the assumption that F_s acts semisimply on $H^i(X_{\overline{s}}, \mathbb{Q}_l)$. So provided the semisimplicity conjecture holds, the above corollary verifies for schemes over finite field a conjecture of Serre and Grothendieck stated in [T].

The semisimplicity conjecture is proved to be true for the following varieties over finite field:

(a) smooth projective curves ([W]),
(b) abelian varieties ([W]),
(c) $K3$ surfaces ([D2], [PS]).

Denote the function field of S_0 by K. Let Y be a smooth projective variety defined over K. Assume Y is in one of the following families:

(a) smooth projective curves,
(b) abelian varieties,
(c) $K3$ surfaces.

Then by the above corollary the Galois representation

$$\text{Gal}(\overline{K}/K) \to H^i(Y \otimes_K \overline{K}, \mathbb{Q}_l)$$

is semisimple. The semisimplicity of the Galois representations of function fields arising from abelian varieties was first proved by Zarhin ([Z]).

2. Proof of the Theorem

We first prove some lemmas.

Lemma 1. Let G^0 be a subgroup of G with finite index. Let $G \to GL(V)$ be a finite dimensional representation of G. If the restriction $G^0 \to GL(V)$ is semisimple, then $G \to GL(V)$ is also semisimple.

Proof. Let U be a G-stable subspace of V. We need to show U has a complement which is also G-stable. It is enough to show that there exists a homomorphism $P : V \to U$ such that $P|_U$ is identity and P is invariant under the action of G. Since V is a semisimple representation of G^0, we can find a homomorphism P_0
such that \(P_{0|U} \) is identity and that \(P_0 \) is \(G^0 \)-invariant. Let \(G^0 g_1, \ldots, G^0 g_n \) be representatives of the right cosets of \(G^0 \), where \(n = [G : G^0] \). Define

\[
P = \frac{1}{n} \sum_{i=1}^{n} g_i^{-1} P_0 g_i.
\]

One can check \(P_{0|U} \) is identity. To see \(P \) is \(G \)-invariant, taking \(g \in G \), then \(G^0 g_1 g, \ldots, G^0 g_n g \) are also representatives of the right cosets. So there is a permutation \(\sigma \) of \(\{1, \ldots, n\} \) such that \(G^0 g_i g = G^0 g_{\sigma(i)} \). Hence there exists \(g_i^0 \in G^0 \) such that \(g_i g = g_i^0 g_{\sigma(i)} \). We have

\[
P g = \frac{1}{n} \sum g_i^{-1} P_0 g_i g = \frac{1}{n} \sum g_i^{-1} P_0 g_i^0 g_{\sigma(i)}
\]

\[
= \frac{1}{n} \sum g_i^{-1} g_i^0 P_0 g_{\sigma(i)} = \frac{1}{n} \sum g g_{\sigma(i)}^{-1} P_0 g_{\sigma(i)} = g P.
\]

So \(P \) is \(G \)-invariant.

Lemma 2. Let \(G^0 \) be a normal subgroup of \(G \). Assume there exists an exact sequence

\[
0 \to G^0 \to G \xrightarrow{deg} \mathbb{Z} \to 0.
\]

We call the homomorphism \(G \xrightarrow{deg} \mathbb{Z} \) the degree homomorphism. Assume there exists an element in the center of \(G \) with nonzero degree. Let \(G \to GL(V) \) be a finite dimensional representation of \(G \). If the restriction \(G^0 \to GL(V) \) is semisimple, and if there exists an element \(g \in G \) with nonzero degree such that matrix corresponding to \(g \) is diagonalizable, then \(G \to GL(V) \) is semisimple.

Proof. Let \(G_d = \{ x \in G : d| \text{deg}(x) \} \), where \(d \) is the degree of an element in the center of \(G \) with nonzero degree. Then \(G_d \) is a subgroup of \(G \) and \(G/G_d \) is isomorphic to \(\mathbb{Z}/d\mathbb{Z} \). By Lemma 1, to prove \(G \to GL(V) \) is semisimple, it is enough to prove the representation \(G_d \to GL(V) \) is semisimple. Replacing \(G \) by \(G_d \) and \(deg \) by \(deg/d \), we may thus assume that there exists an element in the center of \(G \) with degree 1; that is, we may assume \(G = G^0 \times \mathbb{Z} \).

By assumption, the restriction of \(G^0 \times \mathbb{Z} \to GL(V) \) to \(G^0 \) is semisimple. So we have an isomorphism of \(G^0 \)-representations:

\[
\phi : \bigoplus_j (W_j \otimes \text{Hom}_{G^0}(W_j, V)) \to V,
\]

\[(w, f) \mapsto f(w),\]

where the direct sum on the left-hand side sums over all the irreducible representations \(W_j \) of \(G^0 \). If we let \(n \in \mathbb{Z} \) act on \(f \in \text{Hom}_{G^0}(W_j, V) \) by \((nf)(w) = nf(w) \), where \(nf(w) \) is the action of \(n \in \mathbb{Z} \subset G^0 \times \mathbb{Z} \) on \(f(w) \in V \), then \(\phi \) is also an isomorphism of \((G^0 \times \mathbb{Z})\)-representations. So we may assume \(V = \bigoplus_j (W_j \otimes U_j) \) as \((G^0 \times \mathbb{Z})\)-representations, where \(W_j \) are irreducible representations of \(G^0 \) and \(U_j \) are some representations of \(\mathbb{Z} \). By assumption, there exists an element \((g, n) \) with nonzero degree \(n \) such that it corresponds to a diagonalizable matrix in \(GL(V) \). So \((g, n) \) corresponds to a diagonalizable matrix in \(GL(W_j \otimes U_j) \) for each \(j \). Then \(n \) corresponds to a diagonalizable matrix in \(GL(U_j) \) because of the fact that if the tensor product of two matrices is diagonalizable, then each is. Hence \(U_j \) is a semisimple representation of \(\mathbb{Z} \). We can write \(U_j = \bigoplus_k U_{jk} \), where each \(U_{jk} \) is a
one-dimensional representation of \(Z \). We then have \(V = \bigoplus_{jk} (W_j \otimes U_{jk}) \). Obviously each \(W_j \otimes U_{jk} \) is an irreducible representation of \(G^0 \times Z \). So \(V \) is a semisimple representation of \(G^0 \times Z \).

Now let’s prove the theorem. I learned the following proof (and the above Lemma 2) from P. Deligne.

We use the same notation as in [D1]. The lisse \(\mathbb{Q}_l \)-sheaf \(F_0 \) gives rise to a \(\mathbb{Q}_l \)-representation \(\pi_1(X_0, \bar{x}) \rightarrow GL(F_{\bar{x}}) \). Applying the construction [D1] 1.3.7 to \(F_0 \), we get

\[
\begin{array}{cccc}
0 & \rightarrow & \pi_1(X, \bar{x}) & \rightarrow & W(X_0, \bar{x}) & \rightarrow & Z & \rightarrow & 0 \\
\downarrow & & \downarrow & & \deg & \rightarrow & \| & & \\
0 & \rightarrow & G^0 & \rightarrow & G & \rightarrow & Z & \rightarrow & 0 \\
& & & & & \rightarrow & GL(F_{\bar{x}})
\end{array}
\]

where \(G^0 \) is the Zariski closure of the image of \(\pi_1(X, \bar{x}) \rightarrow GL(F_{\bar{x}}) \), the group \(W(X_0, \bar{x}) \) is the Weil group of \(X_0 \), and the second short exact sequence is obtained by pushing forward the first one using \(\pi_1(X, \bar{x}) \rightarrow G^0 \). By [D1] 3.4.1 (iii), \(F \) is a semisimple sheaf on \(X \), that is, the representation \(\pi_1(X, \bar{x}) \rightarrow GL(F_{\bar{x}}) \) is semisimple. By [D1] 1.3.9, the algebraic group \(G^0 \) is an extension of a finite group by a semi-simple group, and by [D1] 1.3.11, if \(Z \) is the center of \(G \), then the restriction of the degree map on \(Z \) has finite kernel and cokernel. ([D1] 1.3.9 and 1.3.11 hold if one just assumes \(F \) is semisimple, as Deligne mentions in the proof of 1.3.9.) In particular, there exists an element in the center of \(G \) with nonzero degree.

Now assume the Frobenius automorphism \(F_x \) acts semisimply on \(F_{\bar{x}} \), and let’s prove the representation \(\pi_1(X_0, \bar{x}) \rightarrow GL(F_{\bar{x}}) \) is semisimple. It is not hard to see the following statements are equivalent:

1. \(\pi_1(X_0, \bar{x}) \rightarrow GL(F_{\bar{x}}) \) is semisimple.
2. \(W(X_0, \bar{x}) \rightarrow GL(F_{\bar{x}}) \) is semisimple.
3. \(G \rightarrow GL(F_{\bar{x}}) \) is semisimple.

We will prove (3) is true. By [D1] 3.4.1 (iii), we know \(\pi_1(X, \bar{x}) \rightarrow GL(F_{\bar{x}}) \) is semisimple. It is not hard to see this implies that \(G^0 \rightarrow GL(F_{\bar{x}}) \) is semisimple. By assumption, \(F_x \) acts semisimply on \(F_{\bar{x}} \). Moreover there exists an element in the center of \(G \) with nonzero degree, and the degree of \(F_x \) is nonzero. So (3) holds by Lemma 2. This proves the theorem.

ACKNOWLEDGEMENTS

I thank Professor Deligne for suggesting Lemma 2 which greatly simplifies the proof of the theorem. This paper is written during my visit at Indiana University. I thank Professor Dadok for inviting me and for many interesting discussions on group theory.

REFERENCES

Institute of Mathematics, Nankai University, Tianjin, People’s Republic of China

E-mail address: leifu@sun.nankai.edu.cn