Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Uniform bounds for stably integral points
on elliptic curves

Author: Patricia L. Pacelli
Journal: Proc. Amer. Math. Soc. 127 (1999), 2535-2546
MSC (1991): Primary 11Gxx, 14Gxx
Published electronically: May 19, 1999
MathSciNet review: 1676288
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that a conjecture by Lang and Vojta regarding integral points on varieties of logarithmic general type implies the existence of a uniform bound on the number of stably $S$-integral points on an elliptic curve over a degree-$d$ number field.

References [Enhancements On Off] (What's this?)

  • [A1] D. Abramovich. Uniformité des points rationnels des courbes algébriques sur les extensions quadratiques et cubiques, C.R. Acad. Sci. Paris, t. 321, Série I (1995), p. 755-758. MR 96g:14017
  • [A2] D. Abramovich. Uniformity of stably integral points on elliptic curves, Invent. Math. 127 (1997), p. 307-317. MR 98d:14033
  • [CHM] L. Caporaso, J. Harris, and B. Mazur. Uniformity of rational points, J. Amer. Math. Soc. 10 no. 1 (1997), p. 1-35. MR 97d:14033
  • [I] S. Iitaka. Algebraic Geometry: an Introduction to Birational Geometry of Algebraic Varieties, Springer-Verlag, (1982). MR 84j:14001
  • [KM] S. Kamienny and B. Mazur. Rational torsion of prime order in elliptic curves over number fields, Asterisque no. 228 (1995), p. 81-100. MR 96c:11058
  • [L] S. Lang. Hyperbolic diophantine analysis, Bull. A.M.S. 14 (1986), p. 159-205. MR 87h:32051
  • [M] L. Merel. Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math. 124 (1996), p. 437-449. MR 96i:11057
  • [P] P. Pacelli. Uniform boundedness for rational points, Duke Math. J. vol. 88 no. 1 (1997), p. 77-102. MR 98b:14020
  • [RS] K. Rubin and A. Silverberg. Families of elliptic curves with constant mod $p$ representations, Elliptic curves, modular forms, and Fermat's last theorem (Hong Kong, 1993), Ser. Number Theory, I, Internat. Press, Cambridge, MA. (1995), p. 148-161. MR 96j:11078
  • [S] J. H. Silverman. The Arithmetic of Elliptic Curves, Springer-Verlag, 1986. MR 87g:11070
  • [V] P. Vojta. A higher dimensional Mordell conjecture, in Arithmetic Geometry, (G. Cornell and J. H. Silverman, eds.), Springer-Verlag, (1986). CMP 19:03

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 11Gxx, 14Gxx

Retrieve articles in all journals with MSC (1991): 11Gxx, 14Gxx

Additional Information

Patricia L. Pacelli
Affiliation: Department of Mathematics, Barnard College, Columbia University, New York, New York 10027-6598

Received by editor(s): September 2, 1997
Published electronically: May 19, 1999
Additional Notes: It is a pleasure to thank Dan Abramovich and Glenn Stevens for encouraging me to pursue this work. Dan Abramovich was also kind enough to read earlier versions of this paper and provide extremely helpful comments
Communicated by: Ron Donagi
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society