STRONG ERGODIC THEOREMS FOR COMMUTATIVE SEMIGROUPS OF OPERATORS

O. KADA

(Communicated by Palle E. T. Jorgensen)

Abstract. We prove strong mean convergence theorems and the existence of ergodic projection and retraction for commutative semigroups of operators which is Eberlein-weakly almost periodic.

Introduction

A strong mean convergence theorem for nonexpansive mappings was first established for odd mappings by Baillon [2], and it was generalized to that for asymptotically isometric mappings by Bruck [4]. After works of Miyadera and Kobayasi [21] and Oka [22], we proved the theorem for general commutative semigroups ([16]). On the other hand, Ruess and Summers [26, 28, 29] proved the strong convergence theorem by different methods, such as the following.

A bounded and continuous function \(f \) from \(\mathbb{R}^+ \) to a Banach space \(E \) is called Eberlein-weakly almost periodic if its orbit by translation \(\{ r(s)f; s \in \mathbb{R}^+ \} \) is relatively weakly compact in the Banach space of all bounded and continuous functions from \(\mathbb{R}^+ \) to \(E \) with supremum norm. Ruess and Summers showed that if \(f \) is Eberlein-weakly almost periodic, then \(\frac{1}{t} \int_0^t f(s+h)ds \) converges strongly as \(t \to \infty \) to a point \(z \in E \) uniformly in \(h \in \mathbb{R}^+ \) (they proved for strongly regular kernels). Consequently, for a nonexpansive semigroup \(\{ T(s); s \in \mathbb{R}^+ \} \) on a closed convex subset \(C \) of a uniformly convex Banach space \(E \), if \(T(\cdot)x \) is asymptotically isometric for \(x \in C \), then \(\frac{1}{t} \int_0^t T(s+h)ds \) converges strongly as \(t \to \infty \) to a common fixed point of \(T(s) \), \(s \in S \), uniformly in \(h \in \mathbb{R}^+ \).

In section 2, we generalize their results to a commutative semigroup of operators, and give a result of the existence of ergodic projection and retraction. In section 3, we use results of Ruess and Summers ([26]) on Eberlein-almost periodicity for nonexpansive semigroups on \(\mathbb{R}^+ \) (resp. \(\mathbb{Z}^+ \)), adapted to the \(d \)-dimensional case, to apply our results to a pair of commuting nonexpansive maps in uniformly convex Banach spaces.
1. Preliminaries

Throughout this paper, \(S \) denotes a commutative semitopological semigroup with identity, i.e., a commutative semigroup with a Hausdorff topology such that for each \(t \in S \), the mapping \(s \mapsto s + t \) from \(S \) to \(S \) is continuous. We assume a Banach space \(E \) is real. We also denote by \(\mathbb{Z}, \mathbb{Z}^+, \mathbb{N}, \mathbb{R} \) and \(\mathbb{R}^+ \) the sets of all integers, nonnegative integers, positive integers, real numbers and nonnegative real numbers, respectively. Let \(l^\infty(S) \) be the Banach space of all bounded real valued functions on \(S \) with the supremum norm, and let \(C_0(S) \) be the subspace of \(l^\infty(S) \) of all bounded continuous real valued functions on \(S \). Then for each \(s \in S \) and \(f \in C_0(S) \), we define an element \(r(s)f \) in \(C_0(S) \) by

\[
(r(s)f)(t) = f(t + s) \quad \text{for all } t \in S.
\]

An element \(\mu \) of \(C_0(S)^* \), where \(C_0(S)^* \) is the dual space of \(C_0(S) \), is called a mean on \(C_0(S) \) if \(\|\mu\| = \mu(1) = 1 \). As is known, \(\mu \) is a mean on \(C_0(S) \) if and only if \(\inf_{s \in S} f(s) \leq \mu(f) \leq \sup_{s \in S} f(s) \) for each \(f \in C_0(S) \). A mean \(\mu \) on \(C_0(S) \) is invariant if \(\mu(r(s)f) = \mu(f) \) for all \(s \in S \) and \(f \in C_0(S) \). It is well known that there exists an invariant mean \(\mu \) on \(l^\infty(S) \); see Day [6]. Since \(C_0(S) \) is invariant under \(r(s) \), the restriction of \(\mu \) on \(C_0(S) \) is an invariant mean on \(C_0(S) \). A finite mean is an element of \(\text{co}\{\delta(s); s \in S\} \), where \(\delta(s)(f) = f(s) \) for each \(f \in l^\infty(S) \) and \(\text{co}A \) is the convex hull of \(A \). Depending on time and circumstances, the values of mean \(\mu \) at \(f \in C_0(S) \) will also be denoted by \(\mu(f) \) or \(\mu_s(f) \). A commutative semigroup \(S \) is a directed system when the binary relation is defined by \(s \leq t \) if and only if \(\{s\} \cup (S + s) \supset \{t\} \cup (S + t) \). We write \(x_n \to x \) (resp. \(x_n \rightharpoonup x \)) to indicate that the sequence \(\{x_n\} \) of vectors converges strongly (resp. weakly) to \(x \).

Let \(C \) be a closed subset of a Banach space \(E \). A mapping \(V \) of \(C \) into itself is called Lipschitzian if there exists \(K \geq 0 \) such that \(\|Vx -Vy\| \leq K\|x - y\| \) for every \(x, y \in C \). We define the Lipschitz norm of \(V \) by \(\|V\| := \sup\{\frac{\|Vx - Vy\|}{\|x - y\|}; x, y \in C, x \neq y\} \). If \(\|V\| \leq 1 \), then \(V \) is called nonexpansive. We denote by \(\text{Lip}(C) \), \(\text{Cont}(C) \) and \(L(E) \) the semitopological semigroup of all Lipschitzian self-mappings of \(C \), the semitopological semigroup of all nonexpansive self-mappings of \(C \) and the semitopological semigroup of all bounded linear mappings of \(E \), under composition and pointwise convergence topology, respectively. Let \(T: S \to \text{Lip}(C) \) or \(\text{Cont}(C) \) (resp. \(L(E) \)) be a representation, i.e., \(T(s + t) = T(s)T(t) \) for every \(s, t \in S \), and \(T(\cdot)x \) is continuous for every \(x \in C \) (resp. \(x \in E \)). We denote by \(\text{Fix}(T) \) the set of common fixed points of \(T(s), s \in S \). We also denote by \(B(E) = \{x \in E; \|x\| \leq 1\} \) the unit ball of \(E \). For two Banach spaces \(E \) and \(F \), \(L(E, F) \) is the set of all bounded linear mappings from \(E \) to \(F \).

Let \(S \) be a topological space and let \(E \) be a Banach space. Then we denote by \(C_0(S, E) \) the Banach space of all bounded continuous mappings from \(S \) to \(E \) with supremum norm, and by \(C_0(C(S, E)) \) the set of all elements \(f \in C_0(S, E) \) such that \(f(S) := \{f(s); s \in S\} \) is relatively weakly compact. It is obvious that \(C_0(C(S, E)) \) is a linear subspace of \(C_0(S, E) \). Let \(\kappa: E \to C_0(S, E) \) be a mapping such that for \(x \in E \) and \(s \in S \), \(\kappa(x)(s) = x \). Since \(\kappa \) is a norm preserving isomorphism of \(E \) into \(C_0(S, E) \), we consider \(E \) as a subspace of \(C_0(S, E) \).

For any mean \(\mu \) on \(C_0(S) \), we define a “vector valued mean” \(\tau(\mu) \) homomorphically, i.e., \(\tau(\mu) \) is an element of \(L(C_0(C(S, E)), E) \) such that \(\tau(\mu)x = x \) for each \(x \in E \), and \(\|\tau(\mu)\| = 1 \). More generally, we give a definition as follows; see [16].
Definition 1.1. Let E be a Banach space. For $\mu \in C_b(S)^*$ and $f \in C_C(S,E)$, let $x_{\mu,f}^*: x^* \mapsto \mu(f(x),x^*)$ be an element of E^{**}. Then $x_{\mu,f}^* \in E$. We define an element $\tau = \tau^E \in L(C_b(S)^*,L(C_C(S,E),E))$ by $\tau(\mu)f = x_{\mu,f}^*$.

Remark 1.2. The following holds; see [16]. (i) τ is injective and $\|\tau\| \leq 1$; (ii) $\tau(\mu)x = \mu(1)x$ for all $x \in E$, and if μ is a mean on $C_b(S)$, then $\|\tau(\mu)\| = 1$; (iii) τ maps the point evaluation $\varepsilon(s)$ to the point evaluation $\varepsilon(s)$, $s \in S$, where $\varepsilon(s)f = f(s)$ for $f \in C_C(S,E)$; (iv) $\tau(r(s)^*\mu) = r(s)^*\tau(\mu)$.

Let $T: S \to \text{Lip}(C)$ be a representation such that $T(\cdot)x \in C_C(S,E)$ for some $x \in C$. Then we shall denote $\tau(\mu)(T(\cdot)x)$ by $T(\mu)x$, which is an element of E.

2. Ergodic theorems for weakly almost periodic functions

In this section we prove strong mean convergence theorems and a result about the existence of ergodic projection and retraction of Eberlein-weakly almost periodic functions for commutative semigroups.

Definition 2.1. Let E be a Banach space. A function $f \in C_b(S,E)$ is called Eberlein-weakly almost periodic if $\{r(s)f; s \in S\}$ is a relatively weakly compact subset of $C_b(S,E)$. We denote by $W(S,E)$ the set of all of Eberlein-weakly almost periodic functions. Let $UC_b(S,E)$ be the set of all bounded uniformly continuous functions from S to E, i.e., the set of all $f \in C_b(S,E)$ such that the map $s \mapsto r(s)f$ from S to $C_b(S,E)$ is continuous. Let C be a closed subset of E. A representation $T: S \to \text{Lip}(C)$ is called Eberlein-weakly almost periodic on a subset D of C if for any $x \in D$, $T(\cdot)x \in W(S,E)$.

Remark 2.2. (a) $W(S,E)$ and $UC_b(S,E)$ are closed translation invariant linear subspaces of $C_b(S,E)$. (b) We do not know whether $W(S,E) \subset UC_b(S,E)$. This holds when $S = \mathbb{R}^+$; see [29, Proposition 2.1].

Definition 2.3. Let $\{\mu_\alpha; \alpha \in A\}$ be a net of means on $C_b(S)$. Then we call $\{\mu_\alpha\}$ strongly asymptotically invariant (cf. [30], [24]) if $\lim_{s \to \infty} \|\mu_\alpha - r(s)^*\mu_\alpha\| = 0$ for every $s \in S$.

Remark 2.4. (a) Since S is commutative, a strongly asymptotically invariant net of finite means on $C_b(S)$ always exists; see Day [6]. (b) The following are examples of strongly asymptotically invariant net of means.

(i) Let $S = \mathbb{Z}^+$. Then putting $\mu_n(f) = (1/n) \sum_{k=0}^{n-1} f(k)$ for $f \in C_b(\mathbb{Z}^+) = l^\infty(\mathbb{Z}^+), \{\mu_n; n \in \mathbb{N}\}$ is an asymptotically invariant net of means.

(ii) Let $S = \mathbb{Z}^+$. Then putting $\mu_s(f) = (1-s) \sum_{k=0}^{\infty} s^k f(k)$ for $f \in C_b(\mathbb{Z}^+) = l^\infty(\mathbb{Z}^+), \{\mu_s; s \in (0,1)\}$ is an asymptotically invariant net of means.

(iii) Let $S = (\mathbb{Z}^+)^2$. Then putting $\mu_n(f) = (1/n^2) \sum_{i,j=0}^{n-1} f(i,j)$ for $f \in C_b((\mathbb{Z}^+)^2) = l^\infty((\mathbb{Z}^+)^2), \{\mu_n; n \in \mathbb{N}\}$ is an asymptotically invariant net of means.

(iv) Let $S = \mathbb{R}^+$. Then putting $\mu_s(f) = (1/s) \int_0^s f(t) dt$ for $f \in C_b(\mathbb{R}^+), \{\mu_s; s \in \mathbb{R}^+\}$ is an asymptotically invariant net of means.

(v) Let $S = \mathbb{R}^+$. Then putting $\mu_s(f) = s \int_0^\infty e^{-st} f(t) dt$ for $f \in C_b(\mathbb{R}^+), \{\mu_s; s \in \mathbb{R}^+\}$ is an asymptotically invariant net of means.

Definition 2.5 (Eberlein [9]). Let E be a Banach space. $\{T_\alpha; \alpha \in A\}$ is called a system of almost invariant integrals of a representation $U: S \to L(E)$ on a subset
D of E if the following hold:

I. $(T_\alpha) \subset L(E), \sup_{\alpha \in A} \|T_\alpha\| < \infty$;
II. for any $z \in E$ and $\alpha \in A$, $T_\alpha z \in \text{clco}\{U(s)z; s \in S\}$;
III. for any $s \in S$ and $x \in D$,
(a) $\lim_\alpha \|U(s)T_\alpha x - T_\alpha x\| = 0$,
(b) $\lim_\alpha \|T_\alpha U(s)x - x\| = 0$.

We give an example of a system of almost invariant integrals:

Proposition 2.6. Let E be a Banach space and let $U(s) = \tau(s), s \in S$, be the translation operator on $F := W(S,E) \cap UC_b(S,E)$. Let $\{\mu_{\alpha}\}$ be a strongly asymptotically invariant net of means on $C_0(S)$, and define $(T_\alpha) \subset L(F)$ by $(T_\alpha f)(t) = \tau(t)^*\mu_{\alpha}f$ for $f \in F$ and $t \in S$ (see Definition 1.1 for τ). Then (T_α) is a system of asymptotically invariant integrals of a representation $U : S \to L(F)$ on F.

We note that since $W(S,E) \subset C_0(S,E)$, T_α is well defined. For this proof, we give a lemma and a proposition.

Lemma 2.7 (Ruess and Summers [27, proof of Theorem 2.1]). Let E be a Banach space. Let us equip the closed unit ball $B(E^*)$ of E^*, and the set of point evaluations $\delta(s) := \{\delta(s); s \in S\} \subset C_b(S)^*$ on $C_b(S)$, with the topologies induced by the w^*-topology and the strong topology, respectively. Then putting $\Phi(f)((\delta(s),x^*)) = \langle f(s),x^* \rangle$ for $f \in C_b(S,E)$ and $(\delta(s),x^*) \in \delta(S) \times B(E^*)$, Φ is a norm preserving isomorphism from $C_b(S,E)$ onto $C_b(\delta(S) \times B(E^*))$.

Proposition 2.8. Let E be a Banach space and let μ be a mean on $C_0(S)$. Then for any $f \in F := W(S,E) \cap UC_b(S,E)$, $\tau(\tau(\cdot)^*\mu)f \in \text{clco}\{r(s)f; s \in S\} \subset F$.

Proof. First we prove $\|\tau(\tau(t)^*\mu)f - \tau(\tau(s)^*\mu)f\| = \|\tau(\mu)(\tau(t)f) - \tau(\mu)(\tau(s)f)\|
\leq \|\tau(t)f - \tau(s)f\|,$
and if $f \in UC_b(S,E)$, the assertion follows. Assume $\tau(\tau(\cdot)^*\mu)f \not\in A_f := \text{clco}\{r(s)f; s \in S\}$. We consider $C_b(S,E)$ as a subspace of $C_b(\delta(S) \times B(E^*))$ by Lemma 2.7. Since A_f is weakly compact, A_f is closed in the pointwise convergence topology. So, by the separation theorem, there exists a functional T in the dual of $C_b(S,E)$ with respect to the pointwise topology on $\delta(S) \times B(E^*)$ such that $T(\tau(\tau(\cdot)^*\mu)f) < \inf\{T(g); g \in A_f\}$. Put $T = \sum_{i=1}^n \delta(s_i) \otimes x_i^*, n \in \mathbb{N}, s_i \in S, x_i^* \in E^*$. Then we have

$$\sum_{i=1}^n (\tau(r(s_i)^*\mu)f, x_i^*) < \inf\left\{\sum_{i=1}^n \langle g(s_i), x_i^* \rangle; g \in A_f\right\} \leq \inf_{s \in S} \left\{\sum_{i=1}^n \langle (r(s)f)(s_i), x_i^* \rangle \right\}$$
\leq \mu_s \left(\sum_{i=1}^n \langle (r(s)f)(s_i), x_i^* \rangle \right) = \sum_{i=1}^n \mu_s \langle (r(s)f)(s_i), x_i^* \rangle$

$$= \sum_{i=1}^n \langle r(s_i)^*\mu(f, x_i^*) \rangle = \sum_{i=1}^n \langle \tau(r(s_i)^*\mu)f, x_i^* \rangle,$$
which is a contradiction. Hence we have $\tau(\tau(t)^*\mu)f \in A_f$. By Remark 2.2 (a), we have $A_f \subset F$. \qed
Proof of Proposition 2.6. By Proposition 2.8, Definition 2.5 II is satisfied, and $T_\alpha F \subset F$ for any $\alpha \in A$. Clearly T_α is linear, and for any $f \in F$,
\[
\|T_\alpha f\| = \sup_t |T_\alpha f(t)| = \sup_t |\tau*(r(t)^* \mu_\alpha)f| \\
\leq \sup_t \|\tau*(r(t)^* \mu_\alpha)\| \|f\| \leq \|f\|,
\]
implying $\|T_\alpha\| \leq 1$. Hence we have $T_\alpha \in L(F)$. So, Definition 2.5 I is satisfied.

For $f \in F$,
\[
\|U(s)T_\alpha f - T_\alpha f\| = \|r(s)\tau*(r(t)^* \mu_\alpha)f - \tau*(r(t)^* \mu_\alpha)f\| \\
= \sup_t \|\tau*(r(t+s)^* \mu_\alpha)f - \tau*(r(t)^* \mu_\alpha)f\| \\
= \sup_t \|\tau*(r(t)^* \mu_\alpha - \mu_\alpha)(r(t)f)\| \\
\leq \|r(s)^* \mu_\alpha - \mu_\alpha\| \|f\|.
\]
Hence, III (a) is satisfied. Since $T_\alpha U(s)f = \tau*(r(s)^* \mu_\alpha)(r(s)f) = \tau*(s)(r(s)^* \mu_\alpha)f = \tau^*(s+r)^* \mu_\alpha)f = r(s)^* \tau(r(s)^* \mu_\alpha)f = U(s)T_\alpha f$, III (b) is satisfied. This completes the proof.

From Eberlein [9] and Kido and Takahashi [18], we have the following theorem.

Theorem 2.9. Let E be a Banach space and let $\{T_\alpha\}$ be a system of almost invariant integrals of representation $U : S \to L(E)$ on $\{x\}$ for some point $x \in E$. Assume $\sup_{s \in S} \|U(s)\| < \infty$ and a weak cluster point y of $\{T_\alpha x\}$ exists. Then $T_\alpha x$ converges strongly to y. In this case, if $\{U(s)x; s \in S\}$ is relatively weakly compact, then $y = U(\mu)x$ for every invariant mean on $C_b(S)$, and $\{U(\mu)x\} = \clco\{U(s)x; s \in S\} \cap \text{Fix}(U)$.

Definition 2.10. Let C be a closed subset of a Banach space E, and let D be a subset of C. A mapping $P : C \to D$ is called a retraction if $P^2 = P$. Furthermore, assume C and D are linear subspaces of E, and P is linear. Then P is called a projection.

Put $G = W(S, E)$ and $\tau^* = \tau^G \in L(C_b(S)^*, L(C_C(S, G), G))$, where τ^G is as in Definition 1.1. The following theorem is a strong ergodic theorem for Eberlein-weakly almost periodic representations.

Theorem 2.11. Let E be a Banach space and let $U : S \to L(W(S, E))$ be the translating representation. Let μ be an invariant mean on $C_b(S)$. Then the following hold:

(a) For each invariant mean μ on $C_b(S)$, $U(\mu)$ is a nonexpansive projection from $W(S, E)$ onto $\text{Fix}(U) = E$ such that $U(\mu)U(s) = U(s)U(\mu) = U(\mu)$ for every $s \in S$ and $\{U(\mu)f\} = E \cap \clco\{U(s)f; s \in S\}$ for every $f \in W(S, E)$;
(b) $U(\mu)f = \tau'(\mu)(U(\cdot)f) = \tau(\mu)f$ for every $f \in W(S, E)$;
(c) for any strongly asymptotically invariant net of means $\{\mu_\alpha; \alpha \in A\}$ on $C_b(S)$ and $f \in F := W(S, E) \cap UC_b(S, E)$, $\tau(h)^* \mu_\alpha)f$ converges strongly to $y \in E$ uniformly in $h \in S$. Here $y = U(\mu)f$ for every invariant mean μ on $C_b(S)$ and is the only point in $E \cap \clco\{r(s)f; s \in S\}$.

Proof. (a) We note that $U(\cdot)f \in C_C(S, W(S, E))$ for $f \in W(S, E)$. So, $U(\mu)f = \tau'(\mu)(U(\cdot)f) \in W(S, E)$ is well defined. From [18, Theorem 2, Lemma 4], the assertion follows.
(b) Let \(f \in W(S, E) \). By Lemma 2.7, we consider \(C_b(S, E) \) as a subspace of \(C_b(\delta(S) \times B(E^*)) \). Hence, by (a), \(U(\mu)f \in \text{Fix}(U) = E \subset W(S, E) \subset C_b(S, E) \subset C_b(\delta(S) \times B(E^*)) \). For any \(x^* \in B(E^*) \) and \(t \in S \),
\[
\langle U(\mu)f, x^* \rangle = \langle (U(\mu)f)(t), x^* \rangle \quad (\text{considering } U(\mu)f \in C_b(S, E))
\]
\[
= \langle (U(\mu)f)((\delta(t), x^*)) \rangle \quad (\text{considering } U(\mu)f \in C_b(\delta(S) \times B(E^*)))
\]
\[
= \langle (U(\mu)f, (\delta(t), x^*)) \rangle \quad (\text{considering } U(\mu)f \in W(S, E) \text{ and since})
\]
\[
(\delta(t), x^*): g \mapsto g((\delta(t), x^*)) = (g(t), x^*),
\]
\[
g \in W(S, E), \text{ is in } W(S, E)^*
\]
\[
= \mu_s(U(s)f, (\delta(t), x^*))
\]
\[
= \mu_s((U(s)f)(t), x^*) = \mu_s(f(t + s), x^*)
\]
\[
= \mu_s(f(t), x^*) = \tau(\mu)f, x^*).
\]

Since \(x^* \in B(E^*) \) is arbitrary, we have \(\tau^*(\mu)(U(\cdot)f) = U(\mu)f = \tau(\mu)f \).

(c) From Proposition 2.8 we see that there exists a weak cluster point \(g \) of \(\{\tau(r(\cdot)^*\mu_\alpha); \alpha \in A\} \). From Proposition 2.6 and Theorem 2.9, \(\tau(r(\cdot)^*\mu_\alpha)f \) converges strongly to \(g = U(\mu)f \in \text{Fix}(U) = E \) in the supremum norm and \(\{\tau(r(\cdot)^*\mu_\alpha)\} = E \cap \text{clco}\{r(s)f; s \in S\} \). So, the assertion follows.

\[\square\]

Corollary 2.12. Let \(C \) be a closed subset of a Banach space \(E \) and let \(T: S \to \text{Lip}(C) \) be an Eberlein-weakly almost periodic representation on a subset \(D \) of \(C \) such that \(\sup_{s \in S}\|T(s)\| < \infty \). We assume \(\text{Fix}(T) \subset D \). Let \(U(s), s \in S, \) be the translation operator on \(W(S, E) \) and let \(\mu \) be an invariant mean on \(C_b(S, E) \). Then the following hold:

(a) For any strongly asymptotically invariant net of means \(\{\mu_\alpha\} \) on \(C_b(S, E) \) and \(x \in D, T(r(h)^*\mu_\alpha)x \) converges strongly to \(y \in E \) uniformly in \(h \in S \). Here \(y = U(\mu)(T(\cdot)x) \) and is the only point in \(E \cap \text{clco}\{r(s)f; s \in S\} \);

(b) if \(C \) is a closed convex subset of a uniformly convex Banach space \(E \) and \(T: S \to \text{Cont}(C) \), putting \(Px = U(\mu)(T(\cdot)x) \) for \(x \in D, P \) is a nonexpansive retraction from \(D \) onto \(\text{Fix}(T) \) such that \(PT(s) = T(s)P = P \) for every \(s \in S \) and \(Px = \text{clco}(T(s)x); s \in S \) for every \(x \in D \).

Proof. Putting \(f = T(\cdot)x, f \in W(S, E) \cap UC_b(S, E) \). So, (a) follows from Theorem 2.11 (c), and (b) follows from Theorem 2.11 (b) and [12, Theorem 3].

\[\square\]

Remark 2.13. By a result of [14], we see that Theorem 2.11 (c) and Corollary 2.12 (a) hold for strongly regular net \(\{\mu_\alpha\} \) which is a generalization of strongly regular kernel (see [23, 26]). Here a net \(\{\mu_\alpha\} \subset C_b(S)^* \) is called strongly regular ([12]) if it satisfies the following conditions: (a) \(\sup_\alpha \|\mu_\alpha\| < \infty \); (b) \(\lim_\alpha \mu_\alpha(1) = 1 \); (c) \(\lim_\alpha \|\mu_\alpha - r(\cdot)^*\mu_\alpha\| = 0 \) for every \(s \in S \).

Definition 2.14. Let \(C \) be a closed subset of a Banach space \(E \). A representation \(T: S \to \text{Lip}(C) \) is called strongly asymptotic regular on a subset \(D \) of \(C \) if for any \(x \in D, \lim_s \|T(s + t)x - T(s)x\| = 0 \) for every \(t \in S \).

Corollary 2.15. Let \(C \) be a closed subset of a Banach space \(E \) and let \(U(s), s \in S, \) be the translation operator on \(W(S, E) \). Assume a representation \(T: S \to \text{Lip}(C) \) is Eberlein-weakly almost periodic and strongly asymptotic regular on a subset \(D \) of \(C \) such that \(K := \sup_{s \in S}\|T(s)\| < \infty \). Let \(\mu \) be an invariant mean on \(C_b(S) \).
Then the following hold:

(a) \(T(\mu) \) is a Lipschitzian retraction from \(D \) onto \(\text{Fix}(T) \) with \(\|T(\mu)\| \leq K \) such that \(T(\mu)T(s) = T(s)T(\mu) = T(\mu) \) for every \(s \in S \) and \(T(\mu)x \in \text{clo}\{T(s)x; s \in S\} \) for every \(x \in D \);

(b) for any \(x \in D \), \(T(t+s)x \) converges strongly to \(y \in \text{Fix}(T) \) uniformly in \(t \in S \).

Here \(y = U(\mu)(T(\cdot)x) = T(\mu)x \).

Proof. It is easy to see that \(\{U(t); t \in S\} \) is a system of almost invariant integrals of a representation \(U : S \rightarrow L(W(S,E)) \) on \(\{T(\cdot)x; x \in D\} \). So, from Theorem 2.9 and Theorem 2.11 (b), for any \(x \in D \), \(T(t+s)x \rightarrow U(\mu)(T(\cdot)x) = \tau(\mu)(T(\cdot)x) = T(\mu)x \) uniformly in \(t \in S \). Then for any \(q \in S \), \(T(q)T(t+s)x \rightarrow T(q)T(\mu)x \), implying \(T(\mu)x = T(q)T(\mu)x \). So, \(T(\mu)x \in \text{Fix}(T) \). The other assertions are easy. \(\square \)

3. A weakly almost periodic representation

In the previous section, we proved the strong ergodic theorem for Eberlein-weakly almost periodic representations. Russ and Summers [26] proved that if a representation \(T : S \rightarrow \text{Cont}(C) \) is asymptotically isometric, then \(T \) is Eberlein-weakly almost periodic when \(S = \mathbb{R}^+ \) or \(\mathbb{Z}^+ \), and \(E \) is uniformly convex. Their method of proof works as well for the \(d \)-dimensional case.

First, we give a definition.

Definition 3.1. A representation \(T : S \rightarrow \text{Cont}(C) \) is called **asymptotically isometric** on \(D \) if for any \(x, y \in D \), \(\lim_s \|T(s+h)x - T(s+k)y\| \) exists uniformly over \(h, k \in S \).

Let \(S \) be \((\mathbb{Z}^+)^d \) or \((\mathbb{R}^+)^d \), \(d \in \mathbb{N} \), and let \(\| \cdot \| \) be the restriction to \(S \) of any norm on \((\mathbb{R}^d)^d \). We call a representation \(T : S \rightarrow \text{Cont}(C) \) **strongly asymptotically isometric** on a subset \(D \) of \(C \) if for any \(x, y \in D \),

\[
\lim_{\|s\| \to \infty} \|T(s+h)x - T(s)y\| \quad \text{exists uniformly over } h \in S.
\]

Remark 3.2. The following hold; see [16].

1. Assume \(S \) is totally ordered. Then \(T \) is asymptotically isometric on \(D \) if and only if for any \(x, y \in D \), \(\lim_s \|T(s+h)x - T(s+k)y\| \) exists uniformly over \(h \in S \); see Bruck [4] and Oka [22].

2. Let \(C \) be a closed convex subset of a Hilbert space \(E \). Then \(T \) is asymptotically isometric on a subset \(D \) of \(C \) and \(0 \in \text{Fix}(T) \) if and only if there exists a function \(\varepsilon(\cdot, \cdot) : S \times S \rightarrow \mathbb{R} \) such that \(\lim_{s,t \to \infty} \varepsilon(s,t) = 0 \) and for any \(x, y \in D \), \(q \in S \), \(\|T(s+q)x + T(t+q)y\|^2 \leq \|T(s)x + T(t)y\|^2 + \varepsilon(s,t) \).

3. Assume there exist a subnet \(\{s_\alpha\} \) of \(S \) and \(x, y \in C \) such that \(T(s_\alpha)x \) converges strongly to \(y \). Then \(T \) is asymptotically isometric on \(\{T(s)x; s \in S\} \cup \text{Fix}(T) \).

4. Let \(C \) be a closed convex subset of a Hilbert space \(E \) and each \(T(s), s \in S \), is affine. Then \(T \) is asymptotically isometric on \(C \).

Theorem 3.3 (Russ and Summers [27]). Let \(S \) be \((\mathbb{Z}^+)^d \) or \((\mathbb{R}^+)^d \), \(d \in \mathbb{Z}^+ \). Let \(C \) be a closed convex subset of a uniformly convex Banach space \(E \) and let \(x \in C \). Let \(T : S \rightarrow \text{Cont}(C) \) be a strongly asymptotically isometric representation on \(\{x\} \).

Then the following are equivalent:

(a) \(T(\cdot)x \) is Eberlein-weakly almost periodic;

(b) \(\{T(s)x; s \in S\} \) is relatively weakly compact.
Out of the corollaries which we can get by applying Remark 2.13 and Remark 2.4 (b), we give only the following:

Corollary 3.4. Let C be a closed convex subset of a uniformly convex Banach space E, and let $V, W \in \text{Cont}(C)$ be such that $V W = W V$ and $\text{Fix} V \cap \text{Fix} W \neq \emptyset$. Let $x \in C$ and assume $\lim \| (s_1, s_2) \| \to \infty \| V^{s_1+h_1} W^{s_2+h_2} x - V^{s_1} W^{s_2} x \|$ exists uniformly over $h_1, h_2 \in \mathbb{Z}^+$. Then putting $f(s) = V^{s_1} W^{s_2} x$ for $s = (s_1, s_2) \in (\mathbb{Z}^+)^2$, f is an Eberlein-weakly almost periodic function from $(\mathbb{Z}^+)^2$ to E.

Furthermore, assume $\lim_{s_1, s_2 \to \infty} \| V^{s_1+t_1} W^{s_2+t_2} x - V^{s_1} W^{s_2} x \| = 0$ for every $t_1, t_2 \in \mathbb{Z}^+$. Then $V^{s_1+t_1} W^{s_2+t_2} x$ converges strongly as $s_1, s_2 \to \infty$ to a common fixed point of V and W uniformly over $t_1, t_2 \in \mathbb{Z}^+$.

Proof. Define $T : (\mathbb{Z}^+)^2 \to \text{Cont}(C)$ by $T((s_1, s_2)) = V^{s_1} W^{s_2} x$ for $(s_1, s_2) \in (\mathbb{Z}^+)^2$, $x \in C$. Let μ_n be that of Remark 2.4 (b)(iii). Then $T(h) = \mu_n x = (1/n^2) \sum_{i,j=1}^{n-1} V^{i+h_1} W^{j+h_2} x$ for $h = (h_1, h_2) \in (\mathbb{Z}^+)^2$. So, the assertions follow from Remark 2.4 (b)(iii), Theorem 3.3, Corollary 2.12 and Corollary 2.15.

ACKNOWLEDGMENT

The author wishes to express his thanks to Professor W. M. Ruess for pointing out Theorem 3.3 to him.

REFERENCES

Department of Information Sciences, Tokyo Institute of Technology, Oh-Okayama, Meguro-ku, Tokyo 152, Japan

E-mail address: kada@math.sci.ynu.ac.jp