Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Strong ergodic theorems for commutative
semigroups of operators


Author: O. Kada
Journal: Proc. Amer. Math. Soc. 127 (1999), 3003-3011
MSC (1991): Primary 47A35, 47H09, 47H20
DOI: https://doi.org/10.1090/S0002-9939-99-03738-7
Published electronically: May 4, 1999
MathSciNet review: 1636382
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove strong mean convergence theorems and the existence of ergodic projection and retraction for commutative semigroups of operators which is Eberlein-weakly almost periodic.


References [Enhancements On Off] (What's this?)

  • 1. J. B. Baillon, Un théorème de type ergodique pour les contractions non linéaires dans un espace de Hilbert, C. R. Acad. Sci. Paris Sér. A-B, 280 (1975), 1511-1514. MR 51:11205
  • 2. J. B. Baillon, Quelques propriétés de convergence asymptotique pour les semigroups de contractions impaires, C. R. Acad. Sci. Paris Sér. A-B, 283 (1976), 75-78. MR 54:13655
  • 3. J. F. Berglund, H. D. Junghenn and P. Milnes, Analysis on semigroups, John Wiley & Sons, 1989. MR 91b:43001
  • 4. R. E. Bruck, On the almost-convergence of iterates of a nonexpansive mapping in Hilbert space and the structure of the weak $\omega $-limit set, Israel J. Math., 29 (1978), 1-16. MR 58:2474
  • 5. R. E. Bruck, On the convex approximation property and the asymptotic behavior of nonlinear contractions in Banach spaces, Israel J. Math., 38 (1981), 304-314. MR 82h:47051
  • 6. M. M. Day, Amenable semigroups, Illinois J. Math., 1 (1957), 509-544. MR 19:1067c
  • 7. M. M. Day, Fixed point theorem for compact convex sets, Illinois J. Math., 5 (1961), 585-590; 8 (1964), 713. MR 25:1547; MR 29:6463
  • 8. K. DeLeeuw and I. Glicksberg, Applications of almost periodic compactifications, Acta Math. 105 (1961), 63-97. MR 24:A1632
  • 9. W. F. Eberlein, Abstract ergodic theorems and weak almost periodic functions, Trans. Amer. Math. Soc. 667 (1949), 217-240. MR 12:112a
  • 10. S. Goldberg and P. Irwin, Weakly almost periodic vector-valued functions, Diss. Math. 157 (1979), 46pp. MR 80e:43010
  • 11. N. Hirano, K. Kido and W. Takahashi, Asymptotic behavior of commutative semigroups of nonexpansive mappings in Banach spaces, Nonlinear Analysis, 10 (1986), 229-249. MR 87d:47078
  • 12. N. Hirano, K. Kido and W. Takahashi, Nonexpansive retractions and nonlinear ergodic theorems in Banach spaces, Nonlinear Analysis, 12 (1988), 1269-1281. MR 90a:47138
  • 13. O. Kada, Existence of ergodic retraction for noncommutative semigroups in Banach spaces, submitted.
  • 14. O. Kada, Strong ergodic theorems for noncommutative semigroups in Banach spaces, preprint.
  • 15. O. Kada and W. Takahashi, Nonlinear ergodic theorems of almost nonexpansive curves for commutative semigroups, Topological Methods in Nonlinear Analysis, 5 (1995), 305-324. MR 97f:47053
  • 16. O. Kada and W. Takahashi, Strong convergence and nonlinear ergodic theorems for commutative semigroups of nonexpansive mappings, Nonlinear Analysis, 28 (1997), 495-511. MR 97j:47075
  • 17. J. L. Kelly and I. Namioka, Linear topological spaces, Van Nostrand, 1963. MR 29:3851
  • 18. K. Kido and W. Takahashi, Mean ergodic theorems for semigroups of linear operators, J. Math. Anal. Appl., 103 (1984), 387-394. MR 86g:47052
  • 19. G. G. Lorentz, A contribution to the theory of divergent series, Acta Math. 80 (1948), 167-190. MR 10:367e
  • 20. P. Milnes, On vector-valued weakly almost periodic functions, J. London Math. Soc., 22 (1980), 467-472. MR 82i:43007
  • 21. I. Miyadera and K. Kobayasi, On the asymptotic behavior of almost-orbits of nonlinear contraction semigroups in Banach spaces, Nonlinear Analysis, 6 (1982), 349-365. MR 84c:47064
  • 22. H. Oka, On the strong ergodic theorems for commutative semigroups in Banach spaces, Tokyo J. Math., 16 (1993), 385-398. MR 94j:47086
  • 23. S. Reich, Almost convergence and nonlinear ergodic theorems, J. Approximation Theory, 24 (1978), 269-272. MR 80b:47079
  • 24. G. Rodé, An ergodic theorem for semigroups of nonexpansive mappings in a Hilbert space, J. Math. Anal. Appl., 85 (1982), 172-178. MR 83k:47038
  • 25. B. D. Rouhani, Asymptotic behavior of almost nonexpansive sequences in a Hilbert space, J. Math. Anal. Appl. 151 (1990), 226-235. MR 92a:47065
  • 26. W. M. Ruess and W. H. Summers, Weak almost periodicity and the strong ergodic limit theorem for contraction semigroups, Israel J. Math., 64 (1988), 139-157. MR 90c:47118
  • 27. W. M. Ruess and W. H. Summers, Integration of asymptotically almost periodic functions and weak asymptotic almost periodicity, Diss. Math. 279 (1989). MR 90d:46056
  • 28. W. M. Ruess and W. H. Summers, Weakly almost periodic semigroups of operators, Pacific J. Math., 143 (1990), 175-193. MR 91b:47142
  • 29. W. M. Ruess and W. H. Summers, Ergodic theorems for semigroup of operators, Proc. Amer. Math. Soc., 114 (1992), 423-432. MR 92e:47016
  • 30. W. Takahashi, A nonlinear ergodic theorem for an amenable semigroup of nonexpansive mappings in a Hilbert space, Proc. Amer. Math. Soc., 81 (1981), 253-256. MR 82f:47079
  • 31. W. Takahashi, Nonlinear Functional Analysis (Japanese), Kindai-kagakusha, Japan, 1988.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 47A35, 47H09, 47H20

Retrieve articles in all journals with MSC (1991): 47A35, 47H09, 47H20


Additional Information

O. Kada
Affiliation: Department of Information Sciences, Tokyo Institute of Technology, Oh-Okayama, Meguro-ku, Tokyo 152, Japan
Email: kada@math.sci.ynu.ac.jp

DOI: https://doi.org/10.1090/S0002-9939-99-03738-7
Keywords: Nonlinear ergodic theory, semigroup of operators, weak almost periodicity, invariant mean.
Received by editor(s): March 20, 1995
Received by editor(s) in revised form: October 19, 1995, July 18, 1997, and January 9, 1998
Published electronically: May 4, 1999
Communicated by: Palle E. T. Jorgensen
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society