Pi-envelopes of Lie superalgebras

Authors:
Yuri Bahturin and Susan Montgomery

Journal:
Proc. Amer. Math. Soc. **127** (1999), 2829-2839

MSC (1991):
Primary 17A70, 16W50

DOI:
https://doi.org/10.1090/S0002-9939-99-04825-X

Published electronically:
April 23, 1999

MathSciNet review:
1600092

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we find necessary and sufficient conditions on a finite-dimensional Lie superalgebra under which any associative PI-envelope of is finite-dimensional. We also extend M. Scheunert's result which enables one to pass from color Lie superalgebras to the ordinary ones, to the case of gradings by an arbitrary abelian group.

**[Ba 85]**Yu. A. Bahturin, On the structure of the PI-envelope of a finite-dimensional Lie algebra, Soviet Math. (Iz. VUZ)**29**(1985) no. 11, 83-87.**[BMPZ ]**Yu. A. Bahturin, A. Mikhalev, V. Petrogradskii, M. Zaicev, Infinite Dimensional Lie Superalgebras, Expos. Math. vol 7, Walter de Gruyter, Berlin, 1992. MR**94b:17001****[BeC]**J. Bergen and M. Cohen, Actions of commutative Hopf algebras, Bull. LMS**18**(1986), 159-164. MR**87e:16052****[Bi]**Yuly Billig, On the homomorphic image of a special Lie algebra, Mat. Sc**136**(**178**)(1988), 320-323; English transl. in Math. USSR Sb.**64**(1989) MR**89k:17015****[Bl]**R. J. Blattner, Induced and produced representations of Lie algebras, Transactions AMS**144**(1969), 457-474. MR**46i:7338a****[BZ]**Y. Bahturin, M.Zaicev, Identities of graded Lie algebras, J. Algebra**205**(1998), 1-12. CMP**98:15****[CM]**M. Cohen and S. Montgomery, Group-graded rings, smash products, and group actions, Trans. AMS**282**(1984), 237-258. MR**85i:16002****[CR]**M. Cohen and L. Rowen, Group graded rings, Comm. Algebra**11**(1983), 1253 -1270. MR**85b:16002****[Du]**M. Duflo, Sur la classification des ideaux primitifs dans l'algebre enveloppante d'une algebre de Lie semi-simple, Ann. Math.**105**(1977), 107-120. MR**55:3013****[Fa]**D. Farkas, Semisimple representations and affine rings, Proc. AMS**101**(1987), 237 - 238. MR**88h:16027****[Kac]**V. Kac, Lie superalgebras, Advances in Math.**26**(1977), 8-96. MR**58:5803****[Mo]**S. Montgomery, Constructing simple Lie superalgebras from associative graded algebras, J. Algebra**195**(1997), 558 - 579. CMP**98:01****[Po]**H. Pop, A generalization of Scheunert's theorem on cocycle twisting of Lie color algebras, preprint, q-alg 9703002.**[S79a]**M. Scheunert, Generalized Lie algebras, J. Math Physics**20**(1979), 712-720. MR**80f:17007****[S79b]**M. Scheunert, The Theory of Lie Superalgebras, Lecture Notes in Math., vol. 716, Springer-Verlag, Berlin, 1979. MR**80i:17005**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
17A70,
16W50

Retrieve articles in all journals with MSC (1991): 17A70, 16W50

Additional Information

**Yuri Bahturin**

Affiliation:
Department of Algebra, Moscow State University, 119899 Moscow, Russia

Email:
bahturin@mech.math.msu.su

**Susan Montgomery**

Affiliation:
Department of Mathematics, University of Southern California, Los Angeles, California 90089-1113

Email:
smontgom@math.usc.edu

DOI:
https://doi.org/10.1090/S0002-9939-99-04825-X

Received by editor(s):
May 27, 1997

Received by editor(s) in revised form:
December 11, 1997

Published electronically:
April 23, 1999

Additional Notes:
The authors were supported by NSF grant DMS-9500649

Communicated by:
Lance W. Small

Article copyright:
© Copyright 1999
American Mathematical Society