On the minimality of powers

of minimal -bounded abelian groups

Authors:
Dikran Dikranjan and Alberto Tonolo

Journal:
Proc. Amer. Math. Soc. **127** (1999), 3101-3110

MSC (1991):
Primary 54F45, 54D05, 54D30; Secondary 22A05, 22D05, 54D25

Published electronically:
April 23, 1999

MathSciNet review:
1600132

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We describe the structure of totally disconnected minimal -

bounded abelian groups by reducing the description to the case of those of them which are subgroups of powers of the -adic integers . In this case the description is obtained by means of a functorial correspondence, based on Pontryagin duality, between topological and linearly topologized groups introduced by Tonolo. As an application we answer the question (posed in *Pseudocompact and countably compact abelian groups: Cartesian products and minimality*, Trans. Amer. Math. Soc. **335** (1993), 775-790) when arbitrary powers of minimal -bounded abelian groups are minimal. We prove that the positive answer to this question is equivalent to non-existence of measurable cardinals.

**[B]**B. Banaschewski,*Minimal topological algebras*, Math. Ann.**211**(1974), 107–114. MR**0357520****[CG]**W. W. Comfort and Douglass L. Grant,*Cardinal invariants, pseudocompactness and minimality: some recent advances in the topological theory of topological groups*, The Proceedings of the 1981 Topology Conference (Blacksburg, Va., 1981), 1981, pp. 227–265 (1982). MR**672457****[CR]**W. W. Comfort and Kenneth A. Ross,*Pseudocompactness and uniform continuity in topological groups*, Pacific J. Math.**16**(1966), 483–496. MR**0207886****[D1]**Dikran Dikranjan,*Sur la minimalité des produits de groupes topologiques abéliens*, C. R. Acad. Sci. Paris Sér. I Math.**299**(1984), no. 8, 303–306 (French, with English summary). MR**761252****[D2]**Dikran Dikranjan,*Zero-dimensionality of some pseudocompact groups*, Proc. Amer. Math. Soc.**120**(1994), no. 4, 1299–1308. MR**1185278**, 10.1090/S0002-9939-1994-1185278-9**[D3]**D. Dikranjan,*Compactness and connectedness in topological groups*, Topology Appl.,**84**(1998), 227-252. CMP**98:10****[D4]**D. Dikranjan,*The structure of minimal countably compact abelian groups*, Preprint.**[D5]**D. Dikranjan,*Recent advances in minimal topological groups*, Topology Appl.,**85**(1998), 53-91. CMP**98:11****[D6]**D. Dikranjan,*-adic numbers and minimality of powers*, Preprint.**[DPS]**Dikran N. Dikranjan, Ivan R. Prodanov, and Luchezar N. Stoyanov,*Topological groups*, Monographs and Textbooks in Pure and Applied Mathematics, vol. 130, Marcel Dekker, Inc., New York, 1990. Characters, dualities and minimal group topologies. MR**1015288****[DS1]**D. N. Dikranjan and D. B. Shakhmatov,*Products of minimal abelian groups*, Math. Z.**204**(1990), no. 4, 583–603. MR**1062137**, 10.1007/BF02570894**[DS2]**Dikran N. Dikranjan and Dmitrii B. Shakhmatov,*Compact-like totally dense subgroups of compact groups*, Proc. Amer. Math. Soc.**114**(1992), no. 4, 1119–1129. MR**1081694**, 10.1090/S0002-9939-1992-1081694-2**[DS3]**Dikran N. Dikranjan and Dmitrii B. Shakhmatov,*Pseudocompact and countably compact abelian groups: Cartesian products and minimality*, Trans. Amer. Math. Soc.**335**(1993), no. 2, 775–790. MR**1085937**, 10.1090/S0002-9947-1993-1085937-6**[E]**Ryszard Engelking,*General topology*, 2nd ed., Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, Berlin, 1989. Translated from the Polish by the author. MR**1039321****[HR]**Edwin Hewitt and Kenneth A. Ross,*Abstract harmonic analysis. Vol. I*, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. MR**551496****[J]**Thomas Jech,*Set theory*, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. Pure and Applied Mathematics. MR**506523****[P]**Ivan Prodanov,*Precompact minimal group topologies and 𝑝-adic numbers*, Annuaire Univ. Sofia Fac. Math.**66**(1971/72), 249–266 (1974) (English, with Russian summary). MR**0412323****[PS]**I. R. Prodanov and L. N. Stojanov,*Every minimal abelian group is precompact*, C. R. Acad. Bulgare Sci.**37**(1984), no. 1, 23–26. MR**748738****[Ste]**R. M. Stephenson Jr.,*Minimal topological groups*, Math. Ann.**192**(1971), 193–195. MR**0286934****[St]**Luchesar Stojanov,*Weak periodicity and minimality of topological groups*, Annuaire Univ. Sofia Fac. Math. Méc.**73**(1979), 155–167 (1986) (English, with Bulgarian summary). MR**893716****[T1]**A. Tonolo,*On the existence of a finest equivalent linear topology*, Comm. Algebra**20(2)**(1992), 437-455, Erratum ibid.**22(6)**, (1994), 2317. CMP**94:10****[T2]**Alberto Tonolo,*On a class of minimal topological modules*, Abelian groups and modules (Padova, 1994) Math. Appl., vol. 343, Kluwer Acad. Publ., Dordrecht, 1995, pp. 459–466. MR**1378219**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
54F45,
54D05,
54D30,
22A05,
22D05,
54D25

Retrieve articles in all journals with MSC (1991): 54F45, 54D05, 54D30, 22A05, 22D05, 54D25

Additional Information

**Dikran Dikranjan**

Affiliation:
Dipartimento di Matematica e Informatica, Udine University, via delle Scienze 206 (località Rizzi), 33100 Udine, Italy

Email:
dikranja@dimi.uniud.it

**Alberto Tonolo**

Affiliation:
Dipartimento di Matematica Pura ed Applicata, Padova University, Via Belzoni 7, 35131 Padova, Italy

Email:
tonolo@math.unipd.it

DOI:
http://dx.doi.org/10.1090/S0002-9939-99-04834-0

Keywords:
Totally disconnected group,
connected group,
countably compact group,
$\omega $-bounded group,
minimal group,
measurable cardinal

Received by editor(s):
March 25, 1997

Received by editor(s) in revised form:
December 13, 1997

Published electronically:
April 23, 1999

Communicated by:
Alan Dow

Article copyright:
© Copyright 1999
American Mathematical Society