Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Denjoy's theorem with exponents


Author: Alec Norton
Journal: Proc. Amer. Math. Soc. 127 (1999), 3111-3118
MSC (1991): Primary 58F03; Secondary 28A80
Published electronically: April 23, 1999
MathSciNet review: 1600129
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If $X$ is the (unique) minimal set for a $C^{1+\alpha }$ diffeomorphism of the circle without periodic orbits, $0<\alpha <1$, then the upper box dimension of $X$ is at least $\alpha$. The method of proof is to introduce the exponent $\alpha $ into the proof of Denjoy's theorem.


References [Enhancements On Off] (What's this?)

  • 1. S. M. Bates and A. Norton, On sets of critical values in the real line, Duke Math. J. 83 (1996), no. 2, 399–413. MR 1390652, 10.1215/S0012-7094-96-08313-1
  • 2. A. S. Besicovitch and S. J. Taylor, On the complementary intervals of a linear closed set of zero Lebesgue measure, J. London Math. Soc. 29 (1954), 449–459. MR 0064849
  • 3. P. Bohl, Uber die hinsichtlich der unabhängigen variabeln periodische Differential gleichung erster Ordnung, Acta Math. 40 (1916), 321-336.
  • 4. A. Denjoy, Sur les courbes definies par les equations differentielles a la surface du tore, J. Math Pures et Appl. 11 (1932), 333-375.
  • 5. Kenneth Falconer, Fractal geometry, John Wiley & Sons, Ltd., Chichester, 1990. Mathematical foundations and applications. MR 1102677
  • 6. G.R. Hall, Bifurcation of an invariant attracting circle: a Denjoy attractor, Ergod. Th. & Dynam. Sys. 3 (1983), 87-118.
  • 7. J. Harrison, Denjoy fractals, Topology 28 (1989), no. 1, 59–80. MR 991099, 10.1016/0040-9383(89)90032-3
  • 8. M.R. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle a des rotations, Publ. Math. I.H.E.S. 49 (1979), 5-233.
  • 9. Dusa McDuff, 𝐶¹-minimal subsets of the circle, Ann. Inst. Fourier (Grenoble) 31 (1981), no. 1, vii, 177–193 (English, with French summary). MR 613034
  • 10. Patrick D. McSwiggen, Diffeomorphisms of the 𝑘-torus with wandering domains, Ergodic Theory Dynam. Systems 15 (1995), no. 6, 1189–1205. MR 1366315, 10.1017/S014338570000986X
  • 11. A. Norton, Denjoy minimal sets are far from affine, to appear, Ergod. Th. & Dynam. Sys.
  • 12. Alec Norton and Dennis Sullivan, Wandering domains and invariant conformal structures for mappings of the 2-torus, Ann. Acad. Sci. Fenn. Math. 21 (1996), no. 1, 51–68. MR 1375505
  • 13. H. Poincaré, Mémoire sur les courbes définies par une équation différentielle I,II,III,IV, J. Math. Pures et Appl. (1881,82,85,86).
  • 14. E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970.
  • 15. Dennis Sullivan, Conformal dynamical systems, Geometric dynamics (Rio de Janeiro, 1981) Lecture Notes in Math., vol. 1007, Springer, Berlin, 1983, pp. 725–752. MR 730296, 10.1007/BFb0061443

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 58F03, 28A80

Retrieve articles in all journals with MSC (1991): 58F03, 28A80


Additional Information

Alec Norton
Affiliation: Department of Mathematics, University of Texas, Austin, Texas 78712
Email: alec@math.utexas.edu

DOI: http://dx.doi.org/10.1090/S0002-9939-99-04852-2
Keywords: Box dimension, minimal sets, Cantor sets, circle diffeomorphisms
Received by editor(s): July 23, 1997
Received by editor(s) in revised form: December 15, 1997
Published electronically: April 23, 1999
Communicated by: Mary Rees
Article copyright: © Copyright 1999 American Mathematical Society