Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Denjoy's theorem with exponents

Author: Alec Norton
Journal: Proc. Amer. Math. Soc. 127 (1999), 3111-3118
MSC (1991): Primary 58F03; Secondary 28A80
Published electronically: April 23, 1999
MathSciNet review: 1600129
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If $X$ is the (unique) minimal set for a $C^{1+\alpha }$ diffeomorphism of the circle without periodic orbits, $0<\alpha <1$, then the upper box dimension of $X$ is at least $\alpha$. The method of proof is to introduce the exponent $\alpha $ into the proof of Denjoy's theorem.

References [Enhancements On Off] (What's this?)

  • 1. S. M. Bates and A. Norton, On sets of critical values in the real line, Duke Math. J. 83 (1996), no. 2, 399–413. MR 1390652,
  • 2. A.S. Besicovitch and S.J. Taylor, On the complementary intervals of a linear closed set of zero Lebesgue measure, J. London Math. Soc. 29 (1954), 449-459. MR 16:344d
  • 3. P. Bohl, Uber die hinsichtlich der unabhängigen variabeln periodische Differential gleichung erster Ordnung, Acta Math. 40 (1916), 321-336.
  • 4. A. Denjoy, Sur les courbes definies par les equations differentielles a la surface du tore, J. Math Pures et Appl. 11 (1932), 333-375.
  • 5. Kenneth Falconer, Fractal geometry, John Wiley & Sons, Ltd., Chichester, 1990. Mathematical foundations and applications. MR 1102677
  • 6. G.R. Hall, Bifurcation of an invariant attracting circle: a Denjoy attractor, Ergod. Th. & Dynam. Sys. 3 (1983), 87-118.
  • 7. J. Harrison, Denjoy fractals, Topology 28 (1989), no. 1, 59–80. MR 991099,
  • 8. M.R. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle a des rotations, Publ. Math. I.H.E.S. 49 (1979), 5-233.
  • 9. Dusa McDuff, 𝐶¹-minimal subsets of the circle, Ann. Inst. Fourier (Grenoble) 31 (1981), no. 1, vii, 177–193 (English, with French summary). MR 613034
  • 10. Patrick D. McSwiggen, Diffeomorphisms of the 𝑘-torus with wandering domains, Ergodic Theory Dynam. Systems 15 (1995), no. 6, 1189–1205. MR 1366315,
  • 11. A. Norton, Denjoy minimal sets are far from affine, to appear, Ergod. Th. & Dynam. Sys.
  • 12. Alec Norton and Dennis Sullivan, Wandering domains and invariant conformal structures for mappings of the 2-torus, Ann. Acad. Sci. Fenn. Math. 21 (1996), no. 1, 51–68. MR 1375505
  • 13. H. Poincaré, Mémoire sur les courbes définies par une équation différentielle I,II,III,IV, J. Math. Pures et Appl. (1881,82,85,86).
  • 14. E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970.
  • 15. Dennis Sullivan, Conformal dynamical systems, Geometric dynamics (Rio de Janeiro, 1981) Lecture Notes in Math., vol. 1007, Springer, Berlin, 1983, pp. 725–752. MR 730296,

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 58F03, 28A80

Retrieve articles in all journals with MSC (1991): 58F03, 28A80

Additional Information

Alec Norton
Affiliation: Department of Mathematics, University of Texas, Austin, Texas 78712

Keywords: Box dimension, minimal sets, Cantor sets, circle diffeomorphisms
Received by editor(s): July 23, 1997
Received by editor(s) in revised form: December 15, 1997
Published electronically: April 23, 1999
Communicated by: Mary Rees
Article copyright: © Copyright 1999 American Mathematical Society