Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On pointwise convergence of Fourier series
of radial functions in several variables


Author: Shigehiko Kuratsubo
Journal: Proc. Amer. Math. Soc. 127 (1999), 2987-2994
MSC (1991): Primary 42B05
DOI: https://doi.org/10.1090/S0002-9939-99-04886-8
Published electronically: April 28, 1999
MathSciNet review: 1605996
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the pointwise convergence of the Fourier series for radial functions in several variables, which in the case $n=1$ is the Dirichlet-Jordan theorem itself. In our proof the method for the case of the indicator function of the ball is very useful.


References [Enhancements On Off] (What's this?)

  • 1. L. Brandolini and L. Colzani, A convergence theorem for multiple Fourier series (preprint).
  • 2. F. Fricker, Einführung in die Gitterpunktlehre, Birkhäuser Verlag, 1982. MR 84b:10001
  • 3. G. H. Hardy and E. Landau, The lattice points of a circle, Proc. Roy. Soc. London Ser. A 105 (1924), 244-258.
  • 4. S. Kuratsubo, On pointwise convergence of Fourier series of the indicator function of n dimensional ball, Sci. Report Hirosaki 43 (1996), 199-208. MR 98e:42010
  • 5. E. Landau, Zur Analytischen Zahlentheorie der definiten quadratischen Formen (Über die Gitterpunkte in einem mehrdimensional Ellipsoid. ), Sitzungsber. Kgl. Preuss. Akad. Wiss. 31 (1915), 11-29.
  • 6. B. Novák, Über Gitterpunkte in mehrdimensionalen Ellipsoiden, Czech. Math. J. 22 (l972), 495-507. MR 46:7170
  • 7. M. A. Pinsky, Pointwise Fourier Inversion and Related Eigenfunction Expansions, Comm. Pure and Appl. Math. 47 (1994), 653-681. MR 95e:35145
  • 8. M. A. Pinsky, N. K. Stanton and P. E. Trapa, Fourier Series of Radial Functions in Several Variables, J. Funct. Anal. 116 (1993), 111-132. MR 94j:42019
  • 9. E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971. MR 46:4102

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 42B05

Retrieve articles in all journals with MSC (1991): 42B05


Additional Information

Shigehiko Kuratsubo
Affiliation: Department of Mathematics, Hirosaki University, Hirosaki 036, Japan
Email: kuratubo@cc.hirosaki-u.ac.jp

DOI: https://doi.org/10.1090/S0002-9939-99-04886-8
Keywords: Fourier series, spherical partial sum, bounded variation, indicator function, lattice point problem
Received by editor(s): September 30, 1997
Received by editor(s) in revised form: January 7, 1998
Published electronically: April 28, 1999
Communicated by: Frederick W. Gehring
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society