Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A note on rigidity of 3-Sasakian manifolds


Authors: Henrik Pedersen and Yat Sun Poon
Journal: Proc. Amer. Math. Soc. 127 (1999), 3027-3034
MSC (1991): Primary 53C25; Secondary 32G05, 53C55
DOI: https://doi.org/10.1090/S0002-9939-99-04889-3
Published electronically: April 23, 1999
MathSciNet review: 1605929
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Making use of the relations among 3-Sasakian manifolds, hypercomplex manifolds and quaternionic Kähler orbifolds, we prove that complete 3-Sasakian manifolds are rigid.


References [Enhancements On Off] (What's this?)

  • 1. Y. Akizuki & S. Nakano. Note on Kodaira-Spencer's proof of Lefschetz theorems, Proc. Japan Acad., 30 (1954) 266-272. MR 16:619a
  • 2. W. L. Baily. The decomposition theorem for V-manifolds, Amer. J. Math., 78 (1956) 862-888. MR 20:6537
  • 3. W. L. Baily. On the imbedding of V-manifolds in projective space, Amer. J. Math., 79 (1957) 403-430. MR 20:6538
  • 4. C. Boyer & K. Galicki. The twistor space of a 3-Sasakian manifold, International J. Math., 8 (1997) 31-60. MR 98e:53072
  • 5. C. Boyer, K. Galicki & B. Mann. Quaternionic reduction and Einstein manifolds, Comm. Anal. Geom., 1 (1993) 229-279. MR 95c:53026
  • 6. C. Boyer, K. Galicki & B. Mann. The geometry and topology of 3-Sasakian manifolds, J. reine angew. Math. 455 (1994) 183-220. MR 96e:53057
  • 7. J. L. Cathelineau. Deformations équivariantes d'espaces analytiques complexes compacts, Ann. Scient. Éc. Norm. Sup. $4^e$ 11 (1978) 391-406. MR 80a:32018
  • 8. R. Godement. Théorie Des Faisceaux, Act. Sci. Ind. 1252, Hermann, Paris (1958). MR 21:1583
  • 9. P. Griffiths & J. Harris. Principles of Algebraic Geometry, John Wiley & Sons, New York, (1978). MR 80b:14001
  • 10. N. J. Hitchin, A. Karlhede, U. Lindström & M. Ro\v{c}ek. Hyperkähler metrics and supersymmetry, Comm. Math. Phys., 108 (1987) 535-589. MR 88g:53048
  • 11. E. Horikawa. On deformations of holomorphic maps I, J. Math. Soc. Japan, 25 (1973) 372-396. II, J. Math. Soc. Japan, 26 (1974) 647-667. MR 50:5027
  • 12. S. Kobayashi. Differential Geometry of Complex Vector Bundles, Publications of the Math. Soc. Japan, Iwanami Shoten & Princeton University Press, Princeton (1987). MR 89e:53100
  • 13. C. R. LeBrun. A rigidity theorem for quaternionic-Kähler manifolds, Proc. Amer. Math. Soc., 103 (1988) 1205-1208. MR 89h:53105
  • 14. C. R. LeBrun. Fano manifolds, contact structures and quaternionic geometry, International J. Math., 6 (1995) 419-437. MR 96c:53108
  • 15. P. Molino. Riemannian Foliations, Progress in Math., 73 Birkhäuser, Boston, (1988). MR 89b:53054
  • 16. H. Pedersen & Y. S. Poon. Deformations of hypercomplex structures, J. reine angew. Math. 499 (1998), 81-99. CMP 98:15
  • 17. S. M. Salamon. Quaternionic Kähler manifolds, Invent. Math. 67 (1982) 143-171. MR 83k:53054
  • 18. S. M. Salamon. Differential geometry of quaternionic manifolds, Ann. Scient. Éc. Norm. Sup., $4^e$ 19 (1986) 31-55. MR 87m:53079
  • 19. A. F. Swann. Hyperkähler and quaternionic Kähler geometry, Math. Ann., 289 (1991) 421-450. MR 92c:53030
  • 20. K. Yano & M. Kon. Structures on Manifolds, World Scientific, Singapore, (1984). MR 86g:53001

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 53C25, 32G05, 53C55

Retrieve articles in all journals with MSC (1991): 53C25, 32G05, 53C55


Additional Information

Henrik Pedersen
Affiliation: Institut for Matematik og Datalogi, Odense Universitet, Campusvej 55, Odense M, DK-5230, Denmark
Email: henrik@imada.ou.dk

Yat Sun Poon
Affiliation: Department of Mathematics, University of California at Riverside, Riverside, California 92521
Email: ypoon@math.ucr.edu

DOI: https://doi.org/10.1090/S0002-9939-99-04889-3
Keywords: Sasakian, hypercomplex, deformations
Received by editor(s): December 4, 1997
Published electronically: April 23, 1999
Additional Notes: The first author was partially supported by NATO CRG-950040. The second author was partially supported by NSF grant DMS-9504908.
Communicated by: Peter Li
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society