Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Midconvex functions in locally compact groups


Authors: A. Chademan and F. Mirzapour
Journal: Proc. Amer. Math. Soc. 127 (1999), 2961-2968
MSC (1991): Primary 26A51; Secondary 22A10
DOI: https://doi.org/10.1090/S0002-9939-99-04907-2
Published electronically: June 17, 1999
MathSciNet review: 1610936
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The theorems of Bernstein-Doetsch, and Ostrowski, concerning the continuity of midconvex functions are extended to open subsets of locally compact and root-approximable topological groups.


References [Enhancements On Off] (What's this?)

  • [1] F. Bernstein and G. Doetsch, Zur Theorie der Konvexen Funktionen, Math. Ann. 76 (1915), 514-526.
  • [2] H. Blumberg, On convex functions, Trans. Amer. Math. Soc. 20 (1919), 40-44.
  • [3] N. Bourbaki, Topologie générale, chap. 3 et 4, 2-ième éd. (Actualités Scientifiques et Industrielles no. 1143), Hermann, Paris, (1960). MR 25:4021
  • [4] N. Bourbaki, Espaces vectoriels topologiques, chap. 1 et 2, 2-ième éd. (Actualités Scientifiques et Industrielles no. 1198), Hermann, Paris, (1966).
  • [5] A. Chademan, Sur les notions élémentaires de la théorie spectrale, Thèse de Doctorat 3-ième cycle, Univ. Paris VI, 1970.
  • [6] A. Chademan and F. Mirzapour, Boundedness properties of midconvex functions in locally comact groups, (in Proc. of the 26-th AIMC, March 1995, published by the Iranian Math. Society and University of Kerman, Kerman, Iran), 1995, 59-63. CMP 98:07
  • [7] R. Ger, Some remarks on convex functions, Fund. Math. 66(1970), 255-262. MR 40:7405
  • [8] R. Ger, $n$-convex functions in linear spaces, Aequationes Math. 11 (1974), 172-176. MR 50:10584
  • [9] R. Ger and M. Kuczma, On the boundedness and continuity of convex functions and additive functions, Aequationes Math. 4(1970), 157-162. MR 41:8605
  • [10] I.I. Hirschman and D.V. Widder, The convolution transform, Princeton University Press, Princeton, New Jersey, (1955). MR 17:479c
  • [11] J. L. W. V. Jensen, Sur les fonctions convexes et les inégalités entre les valeurs moyennes, Acta Math. 30(1906), 175-193.
  • [12] Z. Kominek, On additive and convex functionals, Rad. Mat. 3 (1987), 267-279. MR 89e:26029
  • [13] Z. Kominek and M. Kuczma,, Theorems of Bernstein-Doetsch, Piccard and Mehdi and semilinear topology, Arch. Math. 52 (1989), 595-602. MR 90i:46017
  • [14] M. Kuczma, An introduction to the theory of functional equations and inequations. Cauchy's equation and Jensen's inequality, PWN i Uniwersytest Slcaski, Warszawa, (1985). MR 86i:39008
  • [15] M.R. Mehdi, On convex functions, J. Lond. Math. Soc. 39 (1964), 321-326. MR 28:5153
  • [16] C.T. Ng and K. Nikodem, On approximately convex functions, Proc. Amer. Math. Soc. 118 (1993), 103-108. MR 93f:26006
  • [17] A. Ostrowski, Uber die Funktionalgleichung der Exponentialfunktionen und verwande Funktionalgleichungen, Jahresber. Deut. Math. Ver., 38(1929), 54-62.
  • [18] A.W. Roberts and D.A. Varberg, Convex functions, Academic Press, New York, (1973). MR 56:1201
  • [19] W. Sierpinski, Sur les fonctions convexes mesurables; Fund. Math. 1 (1920), 125-129.
  • [20] A. Weil, L' intégration dans les groupes topologiques et ses applications, 2-ième éd., (Actualités Scientifiques et Industrielles no. 1145), Hermann, Paris, (1965).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 26A51, 22A10

Retrieve articles in all journals with MSC (1991): 26A51, 22A10


Additional Information

A. Chademan
Affiliation: Department of Mathematics and Computer Science, Faculty of Science, University of Tehran, Tehran, Iran
Email: chademan@khayam.ut.ac.ir

F. Mirzapour
Affiliation: Department of Mathematics, University of Zanjan, Zanjan, Iran

DOI: https://doi.org/10.1090/S0002-9939-99-04907-2
Keywords: Midconvex functions, locally compact groups, Bernstein-Doetsch theorem, Jensen's theorem, Ostrowski's theorem
Received by editor(s): December 12, 1996
Received by editor(s) in revised form: January 1, 1998
Published electronically: June 17, 1999
Communicated by: J. Marshall Ash
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society