Lp ESTIMATES FOR OSCILLATORY INTEGRAL OPERATORS

LESLIE C. CHENG AND YIBIAO PAN

(Communicated by Christopher D. Sogge)

Abstract. An endpoint boundedness result is established for a class of oscillatory integral operators.

1.

This paper deals with a problem left open in [6]. Let \(\Delta = \{(x, x) : x \in \mathbb{R}\} \), \(K \in C^\infty(\mathbb{R}^2 \setminus \Delta) \) and satisfy

\[
|\partial^{j+l}K(x, y)| \leq A_{jl}|x - y|^{-j-l}
\]

for \((x, y) \in \mathbb{R}^2 \setminus \Delta\) and \(j, l \geq 0\).

For \(a, b \geq 1\), define the non-convolutional oscillatory integral operator \(T_{a,b}\):

\[
(T_{a,b}f)(x) = \int e^{i|x|^a|y|^b}K(x, y)f(y)dy
\]

initially for \(f \in S(\mathbb{R})\).

Such operators often arise in harmonic analysis (see e.g. [7], [8], [9]). It should be noted that when \(a = b = 1\) and \(K = 1\) the operator in (2) is essentially the Fourier transform.

The main problem under investigation concerns the \(L^p\) boundedness of the operators \(\{T_{a,b}\}\). A quick examination of the operators \(T_{a,b}\) with \(K \equiv 1\) reveals that the \(L^p\) inequality

\[
\|T_{a,b}f\|_p \leq C_{a,b,p}\|f\|_p
\]

cannot hold (for all \(f \in S(\mathbb{R})\)) unless \(p = \frac{a+b}{a}\). Thus one is led to the problem of determining whether

\[
\|T_{a,b}f\|_{\frac{a+b}{a}} \leq C_{a,b}\|f\|_{\frac{a+b}{a}}
\]

holds for \(f \in S(\mathbb{R})\) and \(a, b \geq 1\). The following is known:

Theorem A. Suppose that \(K\) satisfies (1). Let \(T_{a,b}\) be given as in (2). Then:

(i) If \(a > 1\) and \(b > 1\), then \(T_{a,b}\) is bounded from \(L^{\frac{a+b}{a}}\) to itself.

(ii) If \(a = b = 1\) (hence \(\frac{a+b}{a} = 2\)), then \(T_{a,b} = T_{1,1}\) is bounded from \(L^2\) to itself.
Part (i) of Theorem A was established in [6] (Theorem 3.1 on page 212), while part (ii) can be found in [5] (see also [7]). Apparently the remaining issue is to answer the following question:

Question. Is \(T_{a,b} \) bounded from \(L^a+b \) to itself when either \(a = 1 \) or \(b = 1 \)?

It would seem quite reasonable to believe that the answer is “yes”. In fact, this was shown to be true in the special case where \(K(x,y) = |x - y|^{\sigma} \) with \(\sigma \in \mathbb{R} \) ([6]). However, for the operators with generic \(K \’s \) that satisfy (1) the question has remained unanswered. The main purpose of this paper is to completely resolve this issue. Namely we have:

Theorem B. Let \(b > 1 \), \(K \) satisfy (1), and \(T_b = T_{1,b} \) be given as in (2). Then there exists a constant \(C_b > 0 \) such that

\[
\|T_b f\|_{b+1} \leq C_b \|f\|_{b+1}
\]

(5)

holds for \(f \in S(\mathbb{R}) \).

For \(a > 1 \) and \(b = 1 \) one obtains (4) from (5) by duality. It follows from Theorems A and B that \(T_{a,b} \) is bounded on \(L^{a+b} \) for all \(a, b \geq 1 \).

Part of our argument presented here is similar to the method used in [6], which goes back to [7]. The key new ingredients are reduction to pseudodifferential operators and the establishment of related \(L^2 \) estimates. This combination allows us to tackle the above mentioned problem and may have applications elsewhere.

For a nonnegative locally integrable function \(w \) we shall write \(\|f\|_{p,w} \) for \(\left(\int \mathbb{R} |f(x)|^p w(x) \, dx \right)^{1/p} \). When \(w \equiv 1 \), we shall simply write \(\|f\|_p \) for \(\|f\|_{p,w} \).

2.

Let \(b > 1 \), \(\eta \in C^\infty(\mathbb{R}) \) such that \(\eta(x) \equiv 1 \) when \(|x| \leq 1/2 \) and \(\eta(x) \equiv 0 \) when \(|x| \geq 1 \). For \(K(x,y) \) that satisfies (1) and \(m \in \mathbb{N} \) we define \(K_m(\cdot,\cdot) \) and \(\omega_m(\cdot,\cdot) \) by

\[
K_m(x,y) = (1 - \eta(x - y))K(x,y)\eta\left(\frac{x - y}{m}\right),
\]

(6)

\[
\omega_m(\tau,\xi) = \int \mathbb{R} e^{ix(\tau - \xi)} K_m(x + |\tau|^{1/b},|\tau|^{1/b}) \, dx.
\]

(7)

We shall begin with two propositions.

Proposition 1. There exist constants \(\tilde{A}_{j,l} \) independent of \(m \) such that

\[
|\frac{\partial^{j+l} K_m}{\partial x^j \partial y^l}(x,y)| \leq \tilde{A}_{j,l}[1 + |x - y|]^{-j-l}
\]

(8)

for \(j, l \geq 0 \) and \((x,y) \in \mathbb{R}^2 \setminus \Delta \).

Proposition 2. There exists \(A > 0 \) which is independent of \(m \) such that

\[
|\omega_m(\tau,\xi)| \leq A \min\{|\tau - \xi|^{-1},|\tau - \xi|^{-2}\}
\]

(9)

for all \(\tau, \xi \in \mathbb{R} \).

The proof of Proposition 1 is elementary and hence will be omitted.
Proof of Proposition 2. If $|\tau - \xi| \geq 1$, then by Integration by Parts and Proposition 1
\[
|\omega_m(\tau, \xi)| = \frac{1}{|\tau - \xi|^2} \int_{\mathbb{R}} e^{ix(\tau-\xi)} \frac{d^2}{dx^2} K_m(x + |\tau|^{\frac{1}{b}}, |\tau|^{\frac{1}{b}}) dx
\]
\[
\leq A|\tau - \xi|^{-2} \int_{|x| \geq \frac{1}{2}} \frac{dx}{|x|^2}
\]
\[
= A \min\{|\tau - \xi|^{-1}, |\tau - \xi|^{-2}\}.
\]
Now suppose that $|\tau - \xi| < 1$ and write $\omega_m(\tau, \xi) = I_1 + I_2$ where
\[
I_1 = \int_{\mathbb{R}} e^{ix(\tau-\xi)} K_m(x + |\tau|^{\frac{1}{b}}, |\tau|^{\frac{1}{b}}) \eta(\tau(x - \xi)) dx
\]
and
\[
I_2 = \int_{\mathbb{R}} e^{ix(\tau-\xi)} K_m(x + |\tau|^{\frac{1}{b}}, |\tau|^{\frac{1}{b}})(1 - \eta(x(x - \xi))) dx.
\]
Then
\[
|I_1| \leq A_1 \int_{|x| \leq |\tau - \xi|^{-1}} dx = 2A_1|\tau - \xi|^{-1}
\]
and
\[
|I_2| \leq \frac{1}{|\tau - \xi|^2} \int_{\mathbb{R}} \frac{d^2}{dx^2} \{K_m(x + |\tau|^{\frac{1}{b}}, |\tau|^{\frac{1}{b}})(1 - \eta(\tau(x - \xi))\})|dx
\]
\[
\leq \frac{A_2}{|\tau - \xi|^2} \left(\int_{|x| \geq (2|\tau - \xi|^{-1})} \frac{dx}{|x|^2} + \int_{(2|\tau - \xi|^{-1}) \leq |x| \leq |\tau - \xi|^{-1}} \frac{|\tau - \xi|}{|x|} + |\tau - \xi|^2 dx \right)
\]
\[
\leq 7A_2|\tau - \xi|^{-1} = 7A_2 \min\{|\tau - \xi|^{-1}, |\tau - \xi|^{-2}\}.
\]
Thus (9) always holds. Using the arguments given above, one easily obtains:

Proposition 3. There exists $A > 0$ independent of m such that
\[
|\frac{\partial \omega_m}{\partial \xi}(\tau, \xi)| \leq A|\xi - \tau|^{-2}
\]
and
\[
|\frac{\partial \omega_m}{\partial \tau}(\tau, \xi)| \leq A(1 + |\tau|^{\frac{1}{b} - 1})|\xi - \tau|^{-2}
\]
for all $\xi \in \mathbb{R}$ and $\tau \neq 0$.

Define the kernels Ω_m and operators H_m by
\[
\Omega_m(\tau, \xi) = \omega_m(\tau, \xi)\eta(\xi - \tau)[1 - \eta(4^b|\tau|)]
\]
and
\[
H_m f(\xi) = \int_{\mathbb{R}} \Omega_m(\tau, \xi)f(\tau)d\tau.
\]
Below is a uniform weighted norm estimate for H_m.

Theorem 4. Let $p \in (1, \infty)$ and $w \in A_p$. Then there exists a constant $A_{p,w} > 0$ independent of m such that
\[
\int_{\mathbb{R}} |H_m f(x)|^p w(x) dx \leq A_{p,w} \int_{\mathbb{R}} |f(x)|^p w(x) dx
\]
holds for all $f \in \mathcal{S}(\mathbb{R})$.

Here $A_p = A_p(\mathbb{R})$ represents the collection of Muckenhoupt’s A_p-weights (see [4]).
Proof. Let \(a(\tau, x) = K_m(x + |\tau|^b, |\tau|^b)[1 - \eta(4^b|\tau|)] \). Then by Proposition 1 for \(j, k \geq 0 \) there exists \(A_{j,k} > 0 \) independent of \(m \) such that

\[
|\frac{\partial^{j+k}a(\tau,x)}{\partial \tau^j \partial x^k}| \leq A_{j,k}(1 + |x|)^{-k}.
\]

Thus \(a(\cdot, \cdot) \) is a symbol in the class \(S_{1,0}^0 \). Let \(W_a \) be the pseudodifferential operator with symbol \(a(\cdot, \cdot) \) i.e.

\[
(W_a f)(\tau) = \int f(x)e^{i\tau x}a(\tau, x)\hat{f}(x)dx.
\]

Then there exists \(C > 0 \) independent of \(m \) such that

\[
\|W_a f\|_2 \leq C\|f\|_2
\]

for all \(f \in \mathcal{S}(\mathbb{R}) \) (see, for example, [10] on page 234).

For \(u \in \mathbb{R} \) we shall let \(f_u(\tau) = e^{i\tau u}f(-\tau) \). Then by (7), (12), (13) and (15)

\[
H_m f(\xi) = \int e^{i\xi u}\hat{\eta}(u)g(\xi, u)du
\]

where \(g(\xi, u) = \mathcal{F}[W_a \mathcal{F}^{-1}(f_u)](\xi) \) and \(\mathcal{F} \) represents the Fourier transform. By (16) and Plancherel’s Theorem, one obtains:

\[
(\int_{\mathbb{R}} |g(\xi, u)|^2 d\xi)^{\frac{1}{2}} \leq C\|f_u\|_2 = C\|f\|_2 \quad \forall \ u \in \mathbb{R}.
\]

It then follows from (17), (18) and Minkowski’s Inequality that

\[
\|H_m f\|_2 \leq C\|\hat{\eta}\|_1\|f\|_2 \leq A\|f\|_2
\]

for all \(f \in \mathcal{S}(\mathbb{R}) \).

Since \(\Omega_m(\tau, \xi) = 0 \) when \(|\tau| \leq 2^{-(2^b+1)} \), (9), (10), (11), and (12) give us that

\[
|\Omega_m(\tau, \xi)| \leq \frac{A}{|\tau - \xi|}
\]

and

\[
|\frac{\partial}{\partial \tau} \Omega_m(\tau, \xi)| + |\frac{\partial}{\partial \xi} \Omega_m(\tau, \xi)| \leq \frac{A}{|\tau - \xi|^2}
\]

hold for \((\xi, \tau) \in \mathbb{R}^2 \setminus \Delta \) and some positive constant \(A \) independent of \(m \). It follows from (19)-(21) that \(\Omega_m(\tau, \xi) \) is a generalized Calderón-Zygmund kernel. By a minor modification of the arguments in [1] one obtains the weighted \(L^p \) inequality (14) with a constant \(A_{p,w} \) independent of \(m \) (see also [10], page 221, and [3]).

Corollary 5. If we let

\[
(J_m f)(\xi) = \int_{\mathbb{R}} \Omega_m(|\tau|^b, \xi)f(\tau)d\tau,
\]

then there exists \(A > 0 \) independent of \(m \) such that

\[
\int_{\mathbb{R}} |(J_m f)(\xi)|^{b+1}|\xi|^{b-1}d\xi \leq A \int_{\mathbb{R}} |f(y)|^{b+1}dy
\]

for all \(f \in \mathcal{S}(\mathbb{R}) \).
Proof. Let
\[f_1(t) = \frac{1}{b} f(t^{\frac{1}{b}}) t^{\frac{1}{b}-1} \chi_{[0,\infty)}(t) \]
and
\[f_2(t) = \frac{1}{b} f(-t^{\frac{1}{b}}) t^{\frac{1}{b}-1} \chi_{[0,\infty)}(t). \]
Then \(J_m f = H_m f_1 + H_m f_2. \) Let \(w(\xi) = |\xi|^{b-1} \in A_{b+1}. \) By Theorem 4 we get
\[
\| J_m f \|_{b+1,w} \leq C(\| f_1 \|_{b+1,w} + \| f_2 \|_{b+1,w}) \leq A \| f \|_{b+1}.
\]
This proves (23).

Lemma 6. Define \(L_m \) by:
\[
(L_m f)(\xi) = \int_{\mathbb{R}} e^{i y (|y|^{b} - \xi)} \Omega_m(|y|^b, \xi) f(y) dy
\]
for \(\xi \in \mathbb{R}. \) Then there exists \(A > 0 \) independent of \(m \) such that
\[
\int_{\mathbb{R}} \|(L_m f)(\xi)\|_{b+1} \|\xi|^{b-1} d\xi \leq A \int_{\mathbb{R}} \|f(y)\|_{b+1} dy
\]
for \(f \in \mathcal{S}(\mathbb{R}). \)

This result follows from Corollary 5 by using the method employed in [6] on pages 217 and 218, which can be traced all the way back to [7] and [9]. Below we shall give a sketch of the proof.

Without loss of generality we may assume that \(\text{supp}(f) \subset [0,\infty). \) For \(j \geq 0 \) let
\[
I_j = [j^{1/b}, (j + 1)^{1/b}), f_j(y) = f(y) \chi_{I_j}(y), \text{ and } g_j(y) = e^{iy^{1/b}y} f_j(y).
\]
Then
\[
(L_m f)(\xi) = \sum_{j=0}^{\infty} (L_m f_j)(\xi).
\]
By (12) and (9)
\[
\|(L_m f_j)(\xi) - e^{-iy^{1/b} \xi} (L_m g_j)(\xi)\|
\]
\[
\leq A \int_{|y|^{b} - \xi| \leq 1} |e^{i y^{1/b} (y^{b} - \xi)} - 1| |\xi - y^{b}|^{b-1} |f_j(y)| dy
\]
\[
\leq A (M f_j)(\xi),
\]
where \((M f)(\xi) \) represents the Hardy-Littlewood maximal function of \(g(t) = f(t^{\frac{1}{b}}) t^{\frac{1}{b}-1}. \) By Corollary 5 and the \(L^{b+1}(\mathbb{R}, |x|^{b-1} dx) \to L^{b+1}(\mathbb{R}, |x|^{b-1} dx) \) boundedness of the Hardy-Littlewood maximal function ([4]), we obtain:
\[
\int_{\mathbb{R}} \|(L_m f_j)(\xi)\|_{b+1} \|\xi|^{b-1} d\xi \leq C \int_{0}^{\infty} |g_j(y)|_{b+1} + \int_{0}^{\infty} ||f_j(y^{\frac{1}{b}})| y^{\frac{1}{b}-1}|_{b+1} y y^{-1} dy
\]
\[
= A \int_{\mathbb{R}} |f_j(y)|_{b+1} dy,
\]
By \(\text{supp}(L_m f_j) \subset [j-1, j+2], \) (26), and (27), we get
\[
\int_{\mathbb{R}} \|(L_m f)(\xi)\|_{b+1} \|\xi|^{b-1} d\xi \leq \tilde{A} \int_{\mathbb{R}} |f(y)|_{b+1} dy.
\]
Lemma 7. Let

\[(Pf)(x) = \int_{\mathbb{R}} e^{ix|y|^b} [1 - \eta(x - y)] K(x, y)[1 - \eta(4^b|y|^b)] f(y) dy.\]

Then there exists \(A > 0\) such that

\[\|Pf\|_{b+1} \leq A\|f\|_{b+1}\]

holds for all \(f \in \mathcal{S}(\mathbb{R})\).

Proof. Let \(f \in \mathcal{S}(\mathbb{R})\). For \(m \in \mathbb{N}\) and \(x \in \mathbb{R}\) let

\[(P_m f)(x) = \int_{\mathbb{R}} e^{ix|y|^b} [1 - \eta(x - y)] K(x, y)\eta\left(\frac{x - y}{m}\right)[1 - \eta(4^b|y|^b)] f(y) dy.

Then by (29), (24) and (12) we obtain

\[\hat{P}_m(\xi) = \int_{\mathbb{R}} e^{iy(\xi - \xi)} [1 - \eta(4^b|y|^b)] \hat{\omega}_m(y, \xi) f(y) dy

and

\[L_m(\chi_{(0,\infty)} f)(\xi) = \int_{\mathbb{R}} e^{iy(\xi - \xi)} [1 - \eta(4^b|y|^b)] \hat{\omega}_m(y, \xi) \eta(\xi - y) f(y) dy.

By (9) we get that for \(\xi \in \mathbb{R}\)

\[|\hat{P}_m(\xi) - \hat{L}_m(\chi_{(0,\infty)} f)(\xi)| \leq A \int_{\mathbb{R}} \frac{|1 - \eta(\xi - y)|}{|\xi - y|^2} |f(y)| dy \leq A(\hat{M}f)(\xi).

By Pitt’s Inequality ([2]), (30), and Lemma 6,

\[\|P_m\|_{b+1} \leq \left(\int_{\mathbb{R}} |\hat{P}_m(\xi)|^{b+1} |\xi|^{b-1} d\xi\right)^{\frac{1}{b+1}}

\leq C\|L_m(\chi_{(0,\infty)} f)\|_{b+1, |x|^{b-1}} + \|\hat{M}f\|_{b+1, |x|^{b-1}}

\leq C\|f\|_{b+1} + C\int_{\mathbb{R}} |f(y)| y^{\frac{b-1}{2}-1} y^{b-1} dy = A\|f\|_{b+1}.

By letting \(m \to \infty\) in (31), we obtain

\[\|\int_{\mathbb{R}} e^{ix|y|^b} [1 - \eta(x - y)] K(x, y)[1 - \eta(4^b|y|^b)] f(y) dy\|_{b+1} \leq A\|f\|_{b+1}.

Similarly,

\[\|\int_{-\infty}^{\infty} e^{ix|y|^b} [1 - \eta(x - y)] K(x, y)[1 - \eta(4^b|y|^b)] f(y) dy\|_{b+1} \leq A\|f\|_{b+1}.

This proves (28).
3.

We shall finish the paper with a proof of our main result.

Proof of Theorem B. For \(f \in S(\mathbb{R}) \) write

\[
(T_b f)(x) = F_1(x) + F_2(x) + F_3(x)
\]

where

\[
F_1(x) = \int_{\mathbb{R}} e^{i|x||y|^b} [1 - \eta(x - y)] K(x, y) [1 - \eta(4^b|y|^b)] f(y) dy,
\]

\[
F_2(x) = \int_{\mathbb{R}} e^{i|x||y|^b} [1 - \eta(x - y)] K(x, y) \eta(4^b|y|^b) f(y) dy,
\]

and

\[
F_3(x) = \int_{\mathbb{R}} e^{i|x||y|^b} \eta(x - y) K(x, y) f(y) dy.
\]

By considering \(x \geq 0 \) and \(x < 0 \) separately and applying Lemma 7, it follows that

\[
\|F_1\|_{b+1} \leq A\|f\|_{b+1}.
\]

Since \(\|F_2\|_{b+1} \leq A(\|\eta\| \ast |f|)(x) \),

\[
\|F_3\|_{b+1} \leq A\|f\|_{b+1}.
\]

For \((x, y) \in \text{supp}[(1 - \eta(x - y)\eta(4^b|y|^b)] \) we have \(|x - y| \geq \frac{1}{2} \) and \(|y| \leq \frac{1}{4} \). Let

\[
I(x) = K(x, 0) \int_{\mathbb{R}} e^{i|x||y|^b} [1 - \eta(x - y)] \eta(4^b|y|^b) f(y) dy
\]

and

\[
\Pi(x) = \frac{\partial K}{\partial y}(x, 0) \int_{\mathbb{R}} e^{i|x||y|^b} [1 - \eta(x - y)] \eta(4^b|y|^b) y f(y) dy.
\]

Then by (1)

\[
|F_2(x) - [I(x) + \Pi(x)]| \leq A \int_{\mathbb{R}} \frac{|f(y)|}{1 + |x - y|^2} dy.
\]

Clearly

\[
|I(x)| \leq A(\|\hat{g}(|x|)\| + (\|\eta\| \ast |f|)(x))
\]

where

\[
g(t) = \frac{1}{b} [f(t^+) + f(-t^+)] t^{b-1} \eta(4^b t) \chi_{(0, \infty)}(t).
\]

Hence by Pitt’s inequality

\[
\int_{\mathbb{R}} |I(x)|^{b+1} dx \leq A \int_{0}^{\infty} |\hat{g}(t)|^{b+1} dt + \|\eta\|_1^{b+1} \|f\|_{b+1}^{b+1}
\]

\[
\leq A \int_{0}^{\infty} |g(t)|^{b+1} |t|^{b-1} dt + \|\eta\|_1^{b+1} \|f\|_{b+1}^{b+1} \leq A\|f\|_{b+1}^{b+1}.
\]

Similarly,

\[
\int_{\mathbb{R}} |\Pi(x)|^{b+1} dx \leq A\|f\|_{b+1}^{b+1}.
\]

Using (35), we obtain:

\[
\|F_2\|_{b+1} \leq A\|f\|_{b+1}.
\]
It now follows from (32)-(34) and (36) that
\[\|T_b f\|_{b+1} \leq A \|f\|_{b+1} \]
for all \(f \in S(\mathbb{R}) \). This completes the proof of Theorem B.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PITTSBURGH, PITTSBURGH, PENNSYLVANIA

15260