THE LENGTH AND THICKNESS OF WORDS
IN A FREE GROUP

R. Z. GOLDSTEIN

(Communicated by Ronald M. Solomon)

Abstract. In this paper we generalize the notion of a cut point of a graph. We assign to each graph a non-negative integer, called its thickness, so that a graph has thickness 0 if and only if it has a cut point. We then apply a method of J. H. C. Whitehead to show that if the coinitial graph of a given word has thickness t, then any word equivalent to it in a free group of rank n has length at least $2nt$. We also define what it means for a word in a free group to be separable and we show that there is an algorithm to decide whether or not a given word is separable.

1. Introduction

Let F be a free group of rank $n \geq 2$ with basis \{ x_1, x_2, \ldots, x_n \}. We shall regard each element x of F as a reduced word in the letters $x_1, x_2, x_1^{-1}, x_2^{-1}, \ldots, x_n, x_n^{-1}$. Following the usual convention, the symbol $|x|$ denotes the length of x as a word in our alphabet.

Definition 1. The symbol $[x]$ represents the set of all words in F equivalent to x, i.e., \{ $\Phi(x) : \Phi \in Aut(F)$ \}. The length of the smallest element equivalent to x is denoted as $\|x\|$.

It is clear that all cyclic conjugates of x are in $[x]$ and that if $y \in [x]$, then $[x] = [y]$. By a result of J. H. C. Whitehead, [5], $\|x\|$ can be effectively computed. Now $\|x\| = 1$ if and only if x is primitive, i.e. part of a basis for F. It is not difficult to prove that $\|x^m\| = |m|\|x\|$, however in general $\|$ behaves rather unpredictably with respect to multiplication in F even when the multiplication does not involve cancellation. For example in the free group F_2 of rank 2 generated by a and b, $\|ab^2a\| = 4$ and $\|b^3\| = 3$ yet $\|ab^2ab^3\| = 1$ since $\{ab^2a, ab^3\}$ is a basis for F_2.

We would like to introduce another integer, $t(x)$, which we call the thickness of $x \in F$. This integer will behave “better” under multiplication than $\|\|$.

Definition 2. Let Γ be a finite graph without loops but with possibly multiple edges between vertices. By a path in Γ between v and w we mean a sequence of vertices v_1, v_2, \ldots, v_m where $v = v_1, w = v_m$ and there exists at least one edge between consecutive vertices. The thickness of a path is the largest integer k, such that there exist at least k edges between consecutive vertices. We define $t(\Gamma)$, the
We see that $t(\Gamma)$ is in a certain way a generalization of a cut point of a graph. By that we mean $t(\Gamma) = 0$ if and only if Γ is disconnected or has a cut point.

Definition 3. Let x be a cyclically reduced word in F; the thickness of x, $t(x)$, is equal to $t(\Gamma_x)$ where Γ_x is the coinitial(star) graph of the word x.

Let y_1, y_2, \ldots, y_m be reduced words in our alphabet. The expression $z \equiv y_1y_2\ldots y_m$ means that word $y_1y_2\ldots y_m$ is reduced and that $z = y_1y_2\ldots y_m$. According to [4], if $t(x) > 0$, then x is not primitive.

Several trivial facts about $t(x)$ are as follows:

1. $t(x^k) = |k|t(x)$.
2. If $y \equiv uxv$, then $t(y) \geq t(x) - 1$.

J. H. C. Whitehead [5] introduced geometric methods to study the relationship between x and $\Phi(x)$. In this paper we will apply his methods to give a lower bound on $|x|$ in terms of $t(x)$.

We will now introduce rather briefly the method of J. H. C. Whitehead. The terminology employed will be that used in [1]; in particular the more descriptive term “endcap” introduced in the latter is used in place of Whitehead’s “two element”.

If D is a closed 3-ball smoothly embedded in S^3, $int(D)$ will denote the interior of D and $bd(D)$ will denote its boundary. Now suppose that $D_1, D_1', D_2, D_2', \ldots, D_n, D_n'$ are disjoint 3-balls smoothly embedded in S^3, define \tilde{M} to be

$$S^3 \setminus \bigcup_{i=1}^{n}(int(D_i) \cup int(D_i'))$$

and let M be the quotient space of \tilde{M} obtained when $bd(D_i)$ is identified to $bd(D_i')$ via an orientation reversing homeomorphism. M is easily seen to be a connected sum of n copies of $S^1 \times S^2$ and thus $\Pi_1(M) \cong F$. From now on the 3-balls $D_1, D_1', D_2, D_2', \ldots, D_n, D_n'$ will be fixed and shall be referred to as the standard elements. Let S_i denote the image in M of $bd(D_i)$. In S^3, let each $bd(D_i)$ be given a normal direction by the vector which points away from $int(D_i)$. The image of this vector is a normal direction to each S_i. The collection of 2-spheres $\{S_1, S_2, \ldots, S_n\}$, together with their outward normals is called the standard sphere basis of M and is denoted as S. Let $\{\Sigma_1, \Sigma_2, \ldots, \Sigma_n\}$ be another family of disjoint 2-spheres embedded in M, where each Σ_i has some predefined normal direction. If we denote this family as Σ, then we say that Σ is a sphere basis of M if there exists a homeomorphism of M onto itself which sends S_i onto Σ_i for all i and which preserves the outward normal directions. It is an easily proved fact that if Σ is a sphere basis, then any choice of outward normals to the Σ_i also gives a sphere basis.

Let T be a smoothly embedded 2-sphere in M which is transverse to each S_i and let \tilde{T} be its preimage in \tilde{M}. Either \tilde{T} is connected and is thus a 2-sphere or else it is disconnected and consists of endcaps (2-cells) and 2-cells with holes. Let us assume that the latter is true and let A be some component of \tilde{T}. The boundary of A consists of disjoint circles each one of which lies on one of the 2-spheres $bd(D_i)$ or $bd(D_i')$. If each component of the boundary of A lies on a different 2-sphere, we shall say that A is normal with respect to S. We say that T is normal with respect to S if either \tilde{T} is connected or else each component of \tilde{T} is normal with respect to S.

Definition 4. Let \(E \) be an endcap of \(\tilde{T} \) and assume that the boundary \(C \) of \(E \) lies on \(\text{bd}(D_i) \). Now \(C \) separates \(\text{bd}(D_i) \) into two discs. The proper disc, \(E_p \), is the disc so that, in \(S^3 \), \(E \cup E_p \) separates \(\text{int}(D_i) \) from \(\text{int}(D'_i) \). Exactly one of the discs is proper. The other disc is called the improper disc and is denoted as \(E_q \).

2. Some preliminary results

Proposition 1. Let \(T \) be a 2-sphere smoothly embedded in \(M \) which is transverse to \(S \); then exactly one of the following holds:

1. \(T \) is trivial, i.e. \(T \) bounds a three ball in \(M \).
2. \(T \) is primitive, i.e. there exists a homeomorphism of \(M \) onto itself which sends \(T \) to some \(S_i \).
3. \(T \) is separant, i.e. \(M \setminus T \) consists of two components, each homeomorphic to either \(S^1 \times S^2 \) with a closed 3-ball removed or a non-trivial connected sum of \(S^1 \times S^2 \)'s with a closed 3-ball removed.

Proof. Our proof follows the method in [5]. Let \(k \) be the minimum number of circles of intersection of \(T \) with \(\Sigma \) as \(\Sigma \) ranges over all sphere bases for \(M \) which are transverse to \(T \). Whitehead’s method is by induction on the number \(k \). We first assume that \(k = 0 \). In this situation we can find a homeomorphism of \(M \) onto itself which sends \(\Sigma \) onto \(S \). The image of \(T \), which we also denote as \(T \), does not intersect \(S \). The lift of \(T \) in \(S^3 \), which we also call \(T \), is a 2-sphere in \(S^3 \) and therefore either

1. \(T \) bounds a 3-ball which contains none of the balls \(D_i \) or \(D'_i \).
2. \(T \) separates some \(D_i \) from \(D'_i \).
3. \(T \) is nontrivial and no \(D_i \) is separated from \(D'_i \) by \(T \), i.e. \(T \) is separant.

According to Singer [3], if we are in (2), then there exists a homeomorphism of \(M \) which sends \(S_i \) onto \(T \) and which maps each \(S_j \), \(i \neq j \), onto itself. Thus when \(k = 0 \) our lemma is proven.

We now assume that the lemma is proven for all \(k \leq m - 1 \) and we may assume, by the argument above, that \(T \cap S \) consists of \(m \) circles. Let \(E \) be an endcap of \(T \) and assume that the boundary of \(E \) lies on \(\text{bd}(D_i) \). Now \(E \cup E_p \) is a 2-sphere embedded in \(S^3 \) which separates \(\text{int}(D_i) \) from \(\text{int}(D'_i) \). Slightly push this 2-sphere into the component which contains \(\text{int}(D'_i) \) and call this new 2-sphere \(E^* \). Now \(T \cap E^* \) has fewer components than \(T \cap S_i \) and \(E^* \) separates \(D_i \) from \(D'_i \). Now replace \(S_i \) by \(E^* \) and call the new family \(\Sigma \). \(\Sigma \) is also a sphere basis for \(M \) and \(T \) intersects \(\Sigma \) in fewer than \(m \) circles. Applying our inductive hypothesis concludes the proof of the lemma. \(\square \)

We should point out that Proposition 1 is valid if \(S \) is replaced by an arbitrary sphere basis. The advantage, which we shall exploit in the next section, of replacing some sphere basis with \(S \) is that it allows arguments to take place in \(S^3 \).

3. Main results

Definition 5. Let \(\alpha \) be a directed simple closed curve, with base point, embedded in \(M \). If \(\Sigma \) is a sphere basis which is transverse to \(\alpha \), the word obtained by transversing \(\alpha \), see e.g. [1], is denoted as \(\alpha(\Sigma) \).

According to Whitehead [5], as \(\Sigma \) ranges over all sphere bases for \(M \) the set of elements obtained is just \([x]\) where \(x = \alpha(S) \). We shall thus denote this set of
elements as $[\alpha]$. If T is a 2-sphere embedded in M which is transverse to α, we shall use the notation $\alpha \cdot T$ to denote the number of points of intersection of α and T.

Theorem 1. Let T be a non-trivial 2-sphere smoothly embedded in M and let x be a cyclically reduced word in F such that $t(x) \geq 1$. If α is a simple closed curve such that $x \in [\alpha]$ and α is transverse to T, then $\alpha \cdot T \geq 2t(x)$.

Proof. For each curve α, which is transverse to T and $x \in [\alpha]$ let Σ_α be a sphere basis with the following properties:

1. $\alpha(\Sigma_\alpha) = x$.
2. Σ_α is transverse to T.
3. The number of circles of intersection of Σ_α and T is minimal with respect to (1) and (2).

Our proof is by induction on k, the number of circles of intersection of T with Σ_α, where α varies over all curves with the property that $x \in [\alpha]$.

We first assume that $k = 0$. In this case we have a closed curve α, a sphere basis Σ_α such that $\alpha(\Sigma_\alpha) = x$ and $T \cap \Sigma_\alpha = \emptyset$. Thus by taking a homeomorphism we may assume that $T \cap S = \emptyset$ and $\alpha(S) = x$. Let $\hat{\alpha}$ be the lift of α to S^3. $\hat{\alpha}$ consists of disjoint arcs with endpoints on the boundary of the D_i and D'_i which miss the interior of these balls. The graph obtained by collapsing each D_i and D'_i to individual vertices and naming these vertices v_i and x_i^{-1} is isomorphic to Γ_x. Since $k = 0$, T can be regarded as a 2-sphere in S^3. T separates S^3 into two 3-balls, B and B'. Both B and B' must contain some D_i or D'_i since T is assumed to be non-trivial. Let the corresponding vertices in Γ_x be v and v' respectively. Now there exists a path P in Γ_x between v and v' whose thickness is at least $t(x)$. Thus there exist 2 consecutive vertices in P, such that the corresponding standard elements, D and D', have the property that D lies in B and D' lies in B'. The edges connecting these vertices correspond injectively to a collection of edges in $\hat{\alpha}$ which meet T, each of which meets T at least once. Since $n \geq 2$, there must be another standard element inside B or B'. Without loss of generality, assume this standard element, denoted D'', lies in B. If w denotes the vertex in Γ_x which corresponds to D'', then there is a path P'' between w and v' which misses v and whose thickness is greater than or equal to $t(x)$. This implies that there is a second pair of standard elements, one of which lies in B and the other in B', which is not identically equal to D and D' and that there are at least $t(x)$ edges between them. These edges are disjoint from the first set. Hence we have at least $2t(x)$ subarcs of α which meet T at least once. Our theorem is therefore proven in the case that $T \cap \Sigma_\alpha$ is empty.

We now assume that the theorem is valid for all α such that T intersects Σ_α in $m-1$ or fewer circles. Let us assume that the number of circles of intersection of T and Σ_α is m. Again we may assume that Σ_α is the standard basis S. Our argument again takes place in S^3. Let E be an endcap of T. Now E meets a unique standard element in some circle; without loss of generality we shall assume it meets the standard element labelled D_i. We will denote the circle of intersection as C. Now let us consider $E \cup E_q$, which we regard as a 2-sphere in S^3. This 2-sphere separates S^3 into two 3-balls, B and B', where B' refers to the component which contains both D_i and D'_i.

Suppose that B does not contain any standard element. We first isotope, if necessary, α, to another closed curve called β, in the following manner. If a component of $\hat{\alpha}$ has neither endpoint on E_q, it is isotoped, keeping its endpoints fixed, to an
The length and thickness of words in a free group

Let F be a free group.

Proof. Suppose that $x \in F$ is cyclically reduced and that $y \in [x]$. The number of times that x_i or x_i^{-1} appears in y is greater than or equal to $2t(x)$.

We shall now list some easily proven facts:

1. $t(x_1^2 x_2^2 \cdots x_n^2) = 1$.
2. If n is even, then $t([x_1, x_2][x_3, x_4] \cdots [x_{n-1}, x_n]) = 1$.
3. $t(x^m) = mt(x)$ when x is cyclically reduced.
4. If $x \equiv uv$, then $t(x) \geq t(u) - 1$.
5. If $t(x) \geq 1$, then $t(x^my)$ goes to infinity as m goes to infinity for fixed y. We do not require that the word xy is reduced.

A proper factorization of F is a pair of proper subgroups, F_1 and F_2, so that the inclusions induce an isomorphism from $F_1 * F_2$ onto F. We say that x is separable if there exists a proper factorization of F and elements $u_i \in F_i$ such that $x = u_1 u_2$.

Corollary 3. Let $x \in F$; if $t(x) \geq 2$, then x is not separable.

Proof. Suppose x were separable. Choose a basis $\{y_1, y_2, \ldots, y_m\}$ for F_1 and choose a basis for F_2, say $\{z_1, z_2, \ldots, z_{n-m}\}$. We can find a sphere basis

$$\Sigma = \Sigma_1, \Sigma_2, \ldots, \Sigma_m, \Sigma_1', \Sigma_2', \ldots, \Sigma_{n-m}$$

so that if α is a closed curve with the property that $\alpha(S) = x$, then $\alpha(\Sigma)$ is the representation of x with respect to the basis

$$\{y_1, y_2, \ldots, y_m, z_1, z_2, \ldots, z_{n-m}\}.$$
Let T be 2-sphere which separates the Σ-spheres from the Σ'-spheres. Since x was assumed to be separable, α can be isotoped to meet T at most twice: this is a contradiction since $t(x) \geq 2$ implies it meets T at least 4-times.

As an application we note that if $x = x_1^{m_1} x_2^{m_2} \ldots x_n^{m_n}$ where $m_k \geq 2$, then x is separable but x^p is not separable if $p \geq 2$.

Theorem 2. Let $x \in F$. If x is separable, then there exists $y \in [x]$ such that $|y| = ||x||$ and $y \equiv w$ where u is a word in the first m letters and v is a word in the last $n - m$ letters for some $1 \leq m < n$.

Proof. Let us assume that $|x| = ||x||$. If x were in a proper free factor, then the result follows from a theorem of A. Shenitzer [2]. Thus we may assume there exists an automorphism Φ such that $\Phi(x) = u_1 u_2$, where u_1 is a non-trivial word in the first m-letters and u_2 is a non-trivial word in the last $n - m$-letters. Using Whitehead’s method we can find a sphere basis Σ and a directed simple closed curve with base point, α, such that $\alpha(S) \equiv x$ and $\alpha(\Sigma) \equiv u_1 u_2$. Thus there exists a separant sphere T such that α intersects T twice. Our proof is by induction on the number of circles, k, in $S \cap T$. If $k = 0$, then by a change of basepoints (cyclic permutation of x), the theorem is proven.

Our inductive step is the following assumption. Suppose that x is a cyclically reduced word and α is a simple closed curve in M so that $\alpha(S) = x$. Suppose that T is a separant sphere such that $\alpha \cdot T = 2$ and $T \cap S$ consists of $p - 1$ or fewer circles. Then there exists an automorphism Φ so that $|\Phi(x)| \leq |x|$ and $\Phi(x) \equiv u_1 u_2$ where u_1 is a word in the first m letters and u_2 is a word in the last $n - m$ letters. We now assume that an α and T are given as above and that $T \cap S$ consists of p circles. Let E be an endcap of T. If $\alpha \cap E$ is empty, then replacing S_i by E^* as in the previous arguments proves the theorem.

We thus may assume that E intersects α exactly once, since there are at least 2 endcaps and T intersects α exactly twice. Now B either contains some standard element D (D') or the standard elements in B come in pairs D, D', etc. If the latter is true, then α must meet E_q, since the only places α can enter or leave B is at E or E_q. By our previous arguments if we replace S_i by E^*, we obtain our result. If the former is true and α meets E_q, then we use the same argument as in the line above. If α does not meet E_q, then it meets the 2-sphere $\Sigma_1 = E \cup E_q$ transversely in one point. This 2-sphere cannot separate M since if it did any simple closed curve would have to meet it transversely an even number of times. Thus according to Proposition 1, Σ_1 is primitive. Let Σ' be a sphere basis in which Σ_1 is the first sphere. The letter x_1 appears exactly once in the word $\Phi'(x)$ where Φ' is the automorphism of F determined by Σ'. This implies that $\Phi'(x)$ and hence x is primitive. Our result clearly follows in this case and our theorem is proven.

Since it is a decidable problem to list all the words of minimal length in $[x]$, it is therefore decidable whether or not x is separable. Unlike the Shenitzer result not all separable words of minimal length can be factored even after taking a cyclic permutation. For example no cyclic permutation of $x = aba^{-1}b$ can be factored. The coinitial graph of x has thickness 1 and thus x is of minimal length. However x is separable since the automorphism which sends a to a and b to ab sends x to $a^2 b^2$.

References