Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Singular sets and maximal topologies


Authors: G. J. Kennedy and S. D. McCartan
Journal: Proc. Amer. Math. Soc. 127 (1999), 3375-3382
MSC (1991): Primary 54A10, 54F65; Secondary 54D80, 54D05
DOI: https://doi.org/10.1090/S0002-9939-99-04883-2
Published electronically: May 4, 1999
MathSciNet review: 1605984
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Spaces which are maximal with respect to a semi-regular property are characterised. Furthermore, a method to construct such topologies is given. Consequently, new characterisations of maximal pseudocompact spaces and of maximal Q.H.C. spaces are presented. Known characterisations of maximal connected spaces and of maximal feebly compact spaces are given alternative proofs.


References [Enhancements On Off] (What's this?)

  • 1. A. V. Arhangelski[??]i and P. J. Collins, On submaximal spaces, Top. Appl., 64 (1995), 219-241. MR 96m:54002
  • 2. N. Bourbaki, Éléments de Mathématique, Topologie Générale, 3rd ed., Actualitiés Scientifques et Industrielles 1142, Hermann, Paris, 1961. MR 25:4480
  • 3. D. E. Cameron, A survey of maximal topological spaces, Top. Proc. 2 (1977), 11-60. MR 80k:54034
  • 4. D. E. Cameron, A class of maximal topologies, Pac. J. Math., 70 (1) (1977), 101-104. MR 57:4092
  • 5. D. E. Cameron, Maximal Q.H.C.-spaces, Rocky Mountain J. Math., 7 (2) (1977), 313-322. MR 56:6611
  • 6. B. Clark and V. Schneider, A characterization of maximal connected spaces and maximal arcwise connected spaces, Proc. Amer. Math. Soc., 104 (4) (1988), 1256-1260. MR 90a:54055
  • 7. A. G. El'kin, Maximal connected Hausdorff spaces, Mat. Zametki, 26 (6) (1979), 939-948, English translation available. MR 81c:54028
  • 8. J. A. Guthrie, H. E. Stone and M. L. Wage, Maximal connected Hausdorff topologies, Top. Proc. 2 (1977), 349-353.
  • 9. J. A. Guthrie and H. E. Stone, Pseudocompactness and invariance of continuity, Gen. Top. Appl. 2 (1977), 1-13. MR 56:1247
  • 10. J. A. Guthrie, H.E. Stone and M. L. Wage, Maximal connected expansions of the reals, Proc. Amer. Math. 69 (1978), 158-163. MR 57:7501
  • 11. G. J. Kennedy and S. D. McCartan, Submaximality and supraconnectedness are complementary topological invariants, Proceedings of the 8th Prague topological symposium, (1996), 163-166.
  • 12. S. D. McCartan, Minimal $T_{ES}$-spaces and minimal $T_{EF}$-spaces, Proc. Roy. Irish. Acad., 79 (A2) (1979), 11-13. MR 80e:54034
  • 13. D. M. G. McSherry, On separation axioms weaker than $T_{1}$, Proc. Roy. Irish. Acad., 74 (A16) (1974), 115-118. MR 50:8435
  • 14. V. Neumann-Lara and R. G. Wilson, Some properties of essentially connected and maximally connected spaces, Houston J. Math., 12 (3) (1986), 419-429. MR 88a:54049
  • 15. J. R. Porter, R. M. Stephenson and R. G. Woods, Maximal feebly compact spaces, Top. Appl. 52 (1993), 203-219. MR 94f:54001
  • 16. J. R. Porter, R. M. Stephenson and R. G. Woods, Maximal pseudocompact spaces, Comment. Math. Univ. Carolinae 35 (1) (1993), 127-145. MR 95j:54004
  • 17. J. R. Porter, R. G. Woods, Extensions and absolutes of Hausdorff spaces, Springer-Verlag, New York-Berlin-Heildelberg, 1988. MR 89b:54003
  • 18. P. Simon, An example of a maximal connected Hausdorff space, Fund. Math. 100 (1978), 157-163. MR 58:7557
  • 19. D. B. Shakhmatov, M. G. Tka\v{c}enko, V. V. Tkachuk, S. Watson and R. G. Wilson, Neither first countable nor \v{C}ech-complete spaces are maximal Tychonoff connected, Proc. Amer. Math. Soc. 126 (1998), 279-287. MR 98c:54014

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 54A10, 54F65, 54D80, 54D05

Retrieve articles in all journals with MSC (1991): 54A10, 54F65, 54D80, 54D05


Additional Information

G. J. Kennedy
Affiliation: Department of Pure Mathematics, Queen’s University of Belfast, Belfast BT7 1NN, Northern Ireland
Email: g.kennedy@qub.ac.uk

S. D. McCartan
Affiliation: Department of Pure Mathematics, Queen’s University of Belfast, Belfast BT7 1NN, Northern Ireland
Email: D.McCartan@qub.ac.uk

DOI: https://doi.org/10.1090/S0002-9939-99-04883-2
Keywords: Semi-regular property, singular set, submaximal, maximal connected, maximal pseudocompact, maximal quasi-H-closed, maximal feebly compact
Received by editor(s): May 28, 1997
Received by editor(s) in revised form: January 21, 1998
Published electronically: May 4, 1999
Additional Notes: The research of the first author was supported by a distinction award scholarship from the Department of Education for Northern Ireland.
Communicated by: Alan Dow
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society