Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Regularity of CR maps between convex hypersurfaces of finite type


Authors: Bernard Coupet, Hervé Gaussier and Alexandre Sukhov
Journal: Proc. Amer. Math. Soc. 127 (1999), 3191-3200
MSC (1991): Primary 32H40, 32H99; Secondary 32F40, 32G07, 32H15, 32H35, 32M99
DOI: https://doi.org/10.1090/S0002-9939-99-04908-4
Published electronically: April 27, 1999
MathSciNet review: 1610940
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study rigidity and regularity properties of CR maps between smooth convex hypersurfaces of finite type in $\mathbb C^{n+1}.$


References [Enhancements On Off] (What's this?)

  • 1. E.Bedford, S.Pinchuk, Domains in $\mathbb C^2$ with noncompact automorphism group, Math.USSR Sbornik 63 (1989), 141-151. MR 92f:32024
  • 2. E.Bedford, S.Pinchuk, Convex domains with noncompact automorphism group, Matem. Sb. 185-5 (1994), 3-26. MR 95e:32037
  • 3. S.Bell, Local regularity of CR homeomorphisms, Duke Math. J. 57 (1988), 295-300. MR 89f:32026
  • 4. S.Bell, D.Catlin, Regularity of CR mappings, Math. Zeit. 199 (1988), 357-368. MR 89i:32028
  • 5. D.Catlin, Boundary invariants of pseudoconvex domains, Ann. Math. 120 (1984), 529-586. MR 86c:32019
  • 6. B.Coupet, S.Pinchuk, A.Sukhov, On boundary rigidity and regularity of holomorphic mappings, Intern. J. Math. 7-5 (1996), 617-643. MR 97k:32043
  • 7. B.Coupet, A.Sukhov, On CR mappings between pseudoconvex hypersurfaces of finite type in $\mathbb C^2,$ Duke Math. J. 88-2 (1997), 281-304. MR 98d:32031
  • 8. K.Diederich, G.Herbort, Pseudoconvex domains of semiregular type, Contributions to complex analysis and analytic geometry, Vieweg Braunschweig (1994), 127-161. MR 96b:32019
  • 9. J.E.Fornaess, N.Sibony, Construction of P.S.H. functions on weakly pseudoconvex domains, Duke Math. J. 58 (1989), 633-656. MR 90m:32034
  • 10. H.Gaussier, Characterization of convex domains with noncompact automorphism group, Mich. J. Math. 44-2 (1997), 375-388. CMP 97:15
  • 11. J.D.McNeal, Convex domains of finite type, J. Funct. Anal. 108 (1992), 361-373. MR 93h:32020
  • 12. D.Mumford, Algebraic geometry I. Complex projective varieties, Springer Verlag (1976). MR 56:11992
  • 13. L.Nirenberg, S.Webster, P.Yang, Local boundary regularity of holomorphic mappings, Comm. Pure Appl. Math. 33 (1980), 305-338. MR 81g:32020
  • 14. S.Pinchuk, On the analytic continuation of holomorphic mappings, Math. USSR Sbornik 27 (1975), 375-392.
  • 15. S.Pinchuk, Sh. Tsyganov, Smoothness of CR mappings between strictly pseudoconvex hypersurfaces, Math. USSR Izvestija 35 (1990), 457-467. MR 90j:32022
  • 16. N.Sibony, Une classe de domaines pseudoconvexes, Duke Math. J. 55-2 (1987), 299-319. MR 88g:32036
  • 17. A.Sukhov, On boundary regularity of holomorphic mappings, Russian Acad. Sci. Sb. Math. 83-2 (1995), 541-551.
  • 18. S.Webster, On the mapping problem for algebraic real hypersurfaces, Invent. math. 43 (1977), 53-68. MR 57:3431

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 32H40, 32H99, 32F40, 32G07, 32H15, 32H35, 32M99

Retrieve articles in all journals with MSC (1991): 32H40, 32H99, 32F40, 32G07, 32H15, 32H35, 32M99


Additional Information

Bernard Coupet
Affiliation: CMI (Center of Mathematics & Information), University of Provence, 39 rue Joliot-Curie, 13453 Marseille Cedex 13, France

Hervé Gaussier
Affiliation: CMI (Center of Mathematics & Information), University of Provence, 39 rue Joliot-Curie, 13453 Marseille Cedex 13, France

Alexandre Sukhov
Affiliation: CMI (Center of Mathematics & Information), University of Provence, 39 rue Joliot-Curie, 13453 Marseille Cedex 13, France

DOI: https://doi.org/10.1090/S0002-9939-99-04908-4
Keywords: Finite type, scaling method, CR map, boundary regularity
Received by editor(s): January 15, 1998
Published electronically: April 27, 1999
Communicated by: Steven R. Bell
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society