ITERATION OF A CLASS OF HYPERBOLIC MEROMORPHIC FUNCTIONS

P. J. RIPPON AND G. M. STALLARD

(Communicated by Mary Rees)

Dedicated to Professor Noel Baker on the occasion of his retirement

Abstract. We look at the class B_n which contains those transcendental meromorphic functions f for which the finite singularities of f^{-n} are in a bounded set and prove that, if f belongs to B_n, then there are no components of the set of normality in which $(f^n)(z) \to \infty$ as $m \to \infty$. We then consider the class \hat{B} which contains those functions f in B_1 for which the forward orbits of the singularities of f^{-1} stay away from the Julia set and show (a) that there is a bounded set containing the finite singularities of all the functions f^{-n} and (b) that, for points in the Julia set of f, the derivatives $(f^n)'$ have exponential-type growth. This justifies the assertion that \hat{B} is a class of hyperbolic functions.

1. Introduction

Let f be a meromorphic function which is not rational of degree less than two, and denote by f^n, $n \in \mathbb{N}$, the n-th iterate of f. The set of normality, $N(f)$, is defined to be the set of points, $z \in \mathbb{C}$, such that $(f^n)_{n \in \mathbb{N}}$ is well-defined, meromorphic and forms a normal family in some neighbourhood of z. The complement of $N(f)$ is called the Julia set, $J(f)$, of f. An introduction to the properties of these sets can be found in, for example, [3].

We will use the following notation concerning singularities:

\[
S(f) = \{z \in \mathbb{C} : z \text{ is a singularity of } f^{-1}\},
\]

\[
P(f) = \{z \in \mathbb{C} : z \text{ is a singularity of } f^{-n}, \text{ for some } n \in \mathbb{N}\}.
\]

It was shown by Herring [7, Theorem 7.1.2] that

\[
\{z \in \mathbb{C} : z \text{ is a singularity of } f^{-n}\} \subseteq S_n(f) = \bigcup_{j=0}^{n-1} f^j(S(f) \setminus A_j(f)),
\]

where

\[
A_j(f) = \{z \in \mathbb{C} : f^j \text{ is not analytic at } z\},
\]

and that

\[
P(f) = \bigcup_{n=0}^{\infty} S_n(f).
\]
Eremenko and Lyubich [6] investigated the properties of entire functions in the class
\[B = \{ f : f \text{ is a transcendental meromorphic function with } S(f) \text{ bounded} \}. \]

In Section 2 we look at the properties of functions in the class
\[B_n = \{ f : f \text{ is a transcendental meromorphic function with } S_n(f) \text{ bounded} \}. \]
(Note that \(B_1 \) is equal to \(B \).) We prove the following result.

Theorem A. If \(f \in B_n \), then there is no component of \(N(f) \) in which \(f^{mn}(z) \to \infty \) as \(m \to \infty \).

Remarks. Our proof is based on ideas of Eremenko and Lyubich [6, Theorem 1] who proved this result in the case when \(f \) is entire and \(n = 1 \). The proof of Theorem A given by Bergweiler [3, Theorem 16] uses [3, Lemma 8] which asserts that, if \(f \in B \), \(p \geq 1 \) and \(0 \) is not a pre-image of \(\infty \), then there exist a positive constant \(R \) and a curve \(\Gamma \) connecting \(0 \) to \(\infty \) such that \(|f^p(z)| \leq R \) for \(z \in \Gamma \). Unfortunately, this lemma is not correct, as shown by the counterexample \(f(z) = \tan \frac{z}{z+\pi} \). Although \(f \in B \), \(f^2 \) is unbounded on each path to \(\infty \). The rest of the proof of [3, Theorem 16] is correct and the reference to [3, Lemma 8] can be successfully replaced by a reference to Lemma 2.1 of this paper.

It follows from Theorem A that, if \(f \in B_n \), then there can be no periodic cycle \(\{N_0, \ldots, N_{n-1}\} \) of components of \(N(f) \) with \(f^{mn}(z) \to \infty \) as \(m \to \infty \) in one of the components—such a cycle is known as a cycle of Baker domains or essentially parabolic domains. Thus we have the following Corollary to Theorem A.

Corollary. If \(f \in B_n \), then \(f \) has no Baker domains of period \(n \).

Many authors have considered functions in the class
\[S = \{ f : f \text{ is a transcendental meromorphic function with } S(f) \text{ finite} \}. \]

It is easy to see that, if \(f \in S \), then \(f \in \bigcap_{n=1}^{\infty} B_n \) and so a special case of the above Corollary is that functions in \(S \) have no Baker domains.

In Sections 3 and 4 we consider the iteration of functions in the class
\[\hat{B} = \{ f : f \in B \text{ and } \bar{P}(f) \cap J(f) = \emptyset \}, \]
where \(\bar{P} \) denotes closure with respect to the plane. In Section 3 we use Theorem A to prove the following result.

Theorem B. If \(f \in \hat{B} \), then \(P(f) \) is bounded.

In Section 4, we use Theorem B together with the results of Section 2 to prove the following result for meromorphic functions which has applications to estimating the Hausdorff dimension of \(J(f) \) when \(f \in \hat{B} \); see [8].

Theorem C. If \(f \in \hat{B} \), then there exist \(K > 1 \) and \(c > 0 \) such that
\[|(f^n)'(z)| > cK^n \frac{|f^n(z)| + 1}{|z| + 1}, \]
for each \(z \in J(f) \setminus A_n(f), n \in \mathbb{N} \).

If \(f \) is rational, then the following conditions are equivalent—see [2, Section 9.7] and [4, Section 5.2] and note that, for rational functions, \(P \) denotes closure in the sphere:
- \(\bar{P}(f) \cap J(f) = \emptyset \);
• \(\hat{P}(f) \) is a compact subset of \(N(f) \);
• \(f \) is expanding, in the sense that there exist \(K > 1 \) and \(c > 0 \) such that
 \[|(f^n)'(z)| > cK^n \]
 for each \(z \in J(f), n \in \mathbb{N} \).

A rational function with these properties is said to be hyperbolic. For transcendental meromorphic functions, these conditions are no longer equivalent and so it is not clear what the definition of a hyperbolic transcendental meromorphic function should be. In view of Theorems B and C, however, it does seem natural to say that the functions in \(\hat{B} \) are hyperbolic.

2. Properties of functions in the class \(B_n \)

We use the following notation:

\[
B(z, r) = \{ w : |w - z| < r \}, \\
D_R = \{ z \in \mathbb{C} : |z| > R \} \cup \{ \infty \}.
\]

The following lemma is probably ‘well known’; we include a proof for the sake of completeness.

Lemma 2.1. If \(f \in B_n \) and \(S_n(f) \subseteq B(0, R) \), then each component of \(f^{-n}(D_R) \) is simply connected in \(\mathbb{C} \).

Proof. Let \(V \) be a component of \(f^{-n}(D_R) \), let \(g \) denote a branch of \(f^{-n} \) which maps a point of \(D_R \) into \(V \) and let \(h \) denote all analytic continuations of \(g(e^t) \) to \(H = \{ t : \text{Re } t > \log R \} \). Then, by the monodromy theorem, \(h \) is analytic in \(H \) and maps \(H \) onto \(V \). There are now two cases to consider.

Case A. The function \(h \) is univalent in \(H \) and hence \(h(H) = V \) is simply connected.

Case B. The function \(h \) is \(2m\pi i \)-periodic in \(H \), for some minimal positive integer \(m \).

Indeed, if \(h \) is not univalent in \(H \), then there is some minimal positive integer \(m \) for which \(h(t_m) = h(t_m + 2m\pi i) \) for some \(t_m \in H \) and, if \(t \) is close to \(t_m \), then it follows from the open mapping theorem that there exists \(t' \) close to \(t_m + 2m\pi i \) with \(h(t) = h(t') \) and hence \(t' = t + 2m\pi i \). Thus \(h \) has period \(2m\pi i \).

In Case B,

\[
h(t) = \varphi(e^{t/m}), \quad \text{for } t \in H,
\]
where \(\varphi(s) = a_1s + a_0 + a_1s^{-1} + \cdots \) is univalent in \(\{ s : |s| > R^{1/m} \} \), and so

\[
f^n(z) = (\varphi^{-1}(z))^m, \quad \text{for } z \in \varphi(\{ s : |s| > R^{1/m} \}).
\]

Now, if \(a_1 \neq 0 \), then \(\varphi(\{ s : |s| > R^{1/m} \}) \) includes a neighbourhood of \(\infty \), so

(2.1)

\[
f^n(z) \approx a_1^{-m}z^m \quad \text{as } z \to \infty.
\]

But (2.1) is impossible because \(\infty \) is an essential singularity of \(f^n \) and not a pole. Thus \(a_1 = 0 \) and \(\varphi \) maps \(\{ s : |s| > R^{1/m} \} \cup \{ \infty \} \) onto a simply connected region in \(\mathbb{C} \) containing \(a_0 \), and this region is \(V \).

We now use Lemma 2.1 to prove the following result.

Lemma 2.2. Let \(f \) be a transcendental meromorphic function. There exists \(R_f \) such that, if \(R > R_f \), \(S_n(f) \subseteq B(0, R) \) and \(|z|, |f^n(z)| > R^2 \), then

\[
|(f^n)'(z)| > \frac{|f^n(z)| \log |f^n(z)|}{16\pi |z|}.
\]
follows from Lemma 2.1 that there exists a branch B_c.

Then, taking f the component of p exist.

The lemma follows by using (2.2) where $\Phi(z) = 2\log z$. Hence $\phi(z) = 2\log z$.

Recall that Theorem A states that, if $f \in B_n$, then there is no component of $N(f)$ in which $f^{mn}(z) \to \infty$ as $m \to \infty$. We are now in a position to give a proof of this result.

Proof of Theorem A. If $f \in B_n$, then there exists $R > \max(e^{16\pi}, R_f)$ with $S_n(f) \subseteq B(0, R)$. If $N(f)$ has a component U in which $f^{mn}(z) \to \infty$ as $m \to \infty$, then there exist $p \in N(f)$ and $r > 0$ such that $B(w, r) \subseteq f^{mn}(U)$ and $|f^{mn}(z)| > R^2$, for each $z \in B(w, r)$, $m = 0, 1, 2, \ldots.$

Now let V_m be the component of $f^{−n}(D_R)$ in which $U_m = f^{mn}(B(w, r))$ lies. Then, taking c to be the same periodic point as in the proof of Lemma 2.2, it follows from Lemma 2.1 that there exists a branch L_m of log for which $L_m(z - c)$ is analytic in V_m. Next, put $T_m = L_m(U_m, c)$ and $F_n(t) = L_m(f^n(e^t + c) - c)$, so that $T_{m+1} = F_{m+1}(T_m)$. It follows from (2.2) that, if $t \in T_m$, then

$$|F'_n(t)| = \left|\frac{(f^n)'(e^t + c)e^t}{f^n(e^t + c) - c}\right| = \frac{(f^n)'(z)(z - c)}{f^n(z) - c} \geq \frac{(f^n)'(z)(z - c)}{2f^n(z)} \geq \frac{B}{2\pi} (\log |f^n(z)| - \log R) \geq \frac{B \log R}{2\pi} \geq 2,$$

and so

$$|(F_m \circ \cdots \circ F_1)'(t)| \geq 2^m, \quad \text{for } t \in T_1.$$
Thus, by Bloch’s Theorem, T_m contains a disc of radius r_m, where $r_m \to \infty$ as $m \to \infty$. This, however, is impossible since $T_m \subseteq L_m(V_m - c)$ which contains no disc of radius greater than π.

3. Proof of Theorem B

Recall that Theorem B states that, if $f \in \hat{B}$, then $P(f)$ is bounded. Let $f \in \hat{B}$. Since $S(f) \subseteq P(f)$ and $P(f) \cap J(f) = \varnothing$, it follows that $S(f) \subseteq N(f)$ and so, since $S(f)$ is bounded, we deduce that $f \in \bigcap_{n=0}^{\infty} B_n$. The fact that $S(f) \subseteq N(f)$ also implies that

$$P(f) = \bigcup_{j=0}^{\infty} f^j(S(f)).$$

Since $S(f)$ is bounded and contained in $N(f)$, there exist $r > 0$ and a finite number of points $w_1, \ldots, w_M \in S(f)$ such that

$$S(f) \subseteq \bigcup_{i=1}^{M} B(w_i, r) \subseteq N(f).$$

It follows from (3.1) and (3.2) that

$$P(f) \subseteq \bigcup_{i=1}^{M} \bigcup_{j=0}^{\infty} f^j(B(w_i, r)).$$

Therefore, for $1 \leq i \leq M$, we let U_i denote the component of $N(f)$ which contains w_i and consider the possible forward orbits of U_i.

We first show that U_i cannot be a wandering domain. If U_i is a wandering domain, that is, $f^n(U_i) \cap f^m(U_i) = \varnothing$ when $n \neq m$, then there cannot exist a non-constant limit function of $\{f^n|_{U_i}\}$; see, for example, [1, Lemma 2.1]. Since $f \in B_1$, it follows from Theorem A that there exist a sequence $\{n_k\}$ and a finite value $a \in \mathbb{C}$ such that $f^{n_k}(z) \to a$ in U_i as $n_k \to \infty$. Since $w_i \in S(f) \cap U_i$, it follows that $a \in \hat{P}(f)$ and, since $f \in \hat{B}$, this implies that $a \in N(f)$. This, however, is impossible if U_i is a wandering domain.

Thus, U_i eventually lands in a periodic cycle $\{N_0, \ldots, N_{n-1}\}$ of components of $N(f)$. Since $P(f) \cap J(f) = \varnothing$, there are no Siegel discs or Hermann rings and so, for $0 \leq p \leq n - 1$, there exists $z_p \in N_p$ with $f^{mn}(z) \to z_p$ locally uniformly in N_p. Since $f \in \bigcap_{n=0}^{\infty} B_n$, it follows from Theorem A that $z_p \neq \infty$, for $0 \leq p \leq n - 1$, and so $\bigcup_{j=0}^{\infty} P(B(w_i, r))$ is bounded. The result now follows from (3.3).

4. Proof of Theorem C

The proof of Theorem C uses results from earlier sections and the following two well known results. The first is Koebe’s one-quarter theorem; see for example, [5].

Lemma 4.1. If f is univalent in $B(z, r)$, then

$$f(B(z, r)) \supset B(f(z), |f'(z)|r/4).$$

The other result we need is a basic property of Julia sets. Let

$$O^-(w) = \{z : f^n(z) = w \text{ for some } n \in \mathbb{N}\},$$

$$E(f) = \{w : O^-(w) \text{ is finite}\}.$$
If f is meromorphic, then $E(f)$ contains at most two points and we have the following result; see, for example, [3, Section 2].

Lemma 4.2. If U is compact, $U \cap E(f) = \emptyset$, $z \in J(f)$ and V is an open neighbourhood of z, then there exists $N \in \mathbb{N}$ such that, for all $n \geq N$, we have

$$f^n(V) \supset U.$$

Theorem C states that, if $f \in \hat{B}$, then there exist $K > 1$ and $c > 0$ such that

$$|(f^n)'(z)| > cK^n \frac{|f^n(z)| + 1}{|z| + 1},$$

for each $z \in J(f) \setminus A_n(f), n \in \mathbb{N}$.

Let $f \in \hat{B}$. We know that $\hat{P}(f) \cap J(f) = \emptyset$ and, from Theorem B, that $\hat{P}(f)$ is bounded. Thus there exist $C > 1$ and an open set G containing $\hat{P}(f)$, such that

$$(4.1) \quad B\left(z, \frac{|z| + 1}{C}\right) \cap G = \emptyset,$$

for each $z \in J(f)$.

Since $\hat{P}(f)$ is bounded, it follows from Lemma 2.2 that there exists $R > 0$ such that

$$(4.2) \quad |(f^n)'(z)| > 16C\frac{|f^n(z)| + 1}{|z| + 1}, \quad \text{for } n \in \mathbb{N}, \ |z| > R, \ |f^n(z)| > R.$$

We now claim that there exists $N_1 \in \mathbb{N}$ such that

$$(4.3) \quad |(f^n)'(z)| > 16C\frac{|f^n(z)| + 1}{|z| + 1}, \quad \text{for } n \geq N_1, \ z \in (J(f) \setminus A_n(f)) \cap \hat{B}(0, R).$$

Otherwise, there exists a sequence of points $z_{n_k} \in (J(f) \setminus A_{n_k}(f)) \cap \hat{B}(0, R)$ such that

$$|(f^{n_k})'(z_{n_k})| \leq 16C\frac{|f^{n_k}(z_{n_k})| + 1}{|z_{n_k}| + 1},$$

with $z_{n_k} \rightarrow \alpha \in J(f) \cap \hat{B}(0, R)$ as $n_k \rightarrow \infty$.

It follows from (4.1) and Lemma 4.1 that, if g is the branch of f^{-n_k} that maps $f^{n_k}(z_{n_k})$ to z_{n_k}, then

$$g\left(B\left(f^{n_k}(z_{n_k}), \frac{|f^{n_k}(z_{n_k})| + 1}{C}\right)\right) \supseteq B\left(z_{n_k}, \frac{|z_{n_k}| + 1}{64C^2}\right).$$

Thus, for large n_k,

$$f^{n_k}\left(B\left(\alpha, \frac{1}{100C^2}\right)\right) \subseteq f^{n_k}\left(B\left(z_{n_k}, \frac{|z_{n_k}| + 1}{64C^2}\right)\right) \subseteq B\left(f^{n_k}(z_{n_k}), \frac{|f^{n_k}(z_{n_k})| + 1}{C}\right)$$

and so, by (4.1),

$$f^n\left(B\left(\alpha, \frac{1}{100C^2}\right)\right) \cap G = \emptyset,$$

for arbitrarily large values of n. Since $\alpha \in J(f)$, this contradicts Lemma 4.2, and hence (4.3) is true.
Thus, by (4.1),

\[(f^n)'(z) > \frac{1}{8C} \frac{|f^n(z)| + 1}{|z| + 1}.\]

Otherwise, there exists a sequence of points \(z_n \in J(f) \setminus A_n(f)\) such that

\[
|(f^n)'(z_n)| \leq \frac{1}{8C} \frac{|f^n(z_n)| + 1}{|z_n| + 1},
\]

with \(z_n \to \alpha \in J(f)\) or \(z_n \to \infty\) as \(n \to \infty\).

It follows from (4.1) and Lemma 4.1 that, if \(g\) is the branch of \(f^{-n_k}\) that maps \(f^{n_k}(z_n)\) to \(z_n\), then

\[
g \left(B \left(f^{n_k}(z_n), \frac{|f^{n_k}(z_n)| + 1}{C} \right) \right) \supseteq B(z_n, 2(|z_n| + 1)) \supseteq B(0, |z_n| + 1).
\]

Since \(z_n \to \alpha \in J(f)\) or \(z_n \to \infty\) as \(n \to \infty\), there exist \(\beta \in J(f), r > 0\) such that, for large values of \(n_k\),

\[
B(\beta, r) \subseteq B(0, |z_n| + 1),
\]

and hence

\[
f^{n_k}(B(\beta, r)) \subseteq f^{n_k}(B(0, |z_n| + 1)) \subseteq B \left(f^{n_k}(z_n), \frac{|f^{n_k}(z_n)| + 1}{C} \right).
\]

Thus, by (4.1),

\[
f^n(B(\beta, r)) \cap G = \emptyset,
\]

for arbitrarily large values of \(n\). Since \(\beta \in J(f)\), this contradicts Lemma 4.2, and hence (4.4) is true.

We now put \(N = \max(N_1, N_2)\). If \(z \in J(f) \setminus A_{2N+p}(f)\), then it follows from (4.2) and (4.3) that

\[
|(f^{2N+p})'(z)| > 16C \frac{|f^{2N+p}(z)| + 1}{|z| + 1},
\]

for each \(p \in \mathbb{N} \cup \{0\}\), provided that either \(|z| \leq R\) or \(|z|, |f^{2N+p}(z)| > R\).

If \(z \in J(f) \setminus A_{2N+p}(f), |z| > R\) and \(|f^{2N+p}(z)| \leq R\), then either \(|f^N(z)| \leq R\) in which case, by (4.3) and (4.4),

\[
|(f^{2N+p})'(z)| > \frac{1}{8C} \frac{|f^N(z)| + 1}{|z| + 1} 16C \frac{|f^{2N+p}(z)| + 1}{|f^N(z)| + 1} = 2 \frac{|f^{2N+p}(z)| + 1}{|z| + 1},
\]

or \(|f^N(z)| > R\) in which case, by (4.2) and (4.4),

\[
|(f^{2N+p})'(z)| > 16C \frac{|f^N(z)| + 1}{|z| + 1} \frac{1}{8C} \frac{|f^{2N+p}(z)| + 1}{|f^N(z)| + 1} = 2 \frac{|f^{2N+p}(z)| + 1}{|z| + 1}.
\]

It follows from (4.5), (4.6) and (4.7) that, for each \(z \in J(f) \setminus A_{2N+p}(f), p \in \mathbb{N} \cup \{0\}\), we have

\[
|(f^{2N+p})'(z)| > 2 \frac{|f^{2N+p}(z)| + 1}{|z| + 1}.
\]
If \(n \geq 2N \), then there exist \(m \in \mathbb{N} \), \(0 \leq p < 2N \) such that \(n = m2N + p \) and so, if \(z \in J(f) \setminus A_n(f) \) and \(n \geq 4N \), then it follows from (4.8) that

\[
| (f^n)'(z) | > 2^m | f^n(z) | + 1 \quad > (2^{1/2})^n | f^n(z) | + 1.
\]

To complete the proof of Theorem C we need to show that there exist \(c_n > 0 \), for \(n = 1, 2, \ldots, 4N - 1 \), such that

\[
| (f^n)'(z) | > c_n \left(\frac{| f^n(z) | + 1}{| z | + 1} \right),
\]

for \(z \in J(f) \setminus A_n(f) \).

If this is not true, then there exist \(m \in \mathbb{N} \) and a sequence of points \(z_k \in J(f) \setminus A_m(f) \) such that

\[
\varepsilon_k = \left(\frac{| (f^m)'(z_k) | (| z_k | + 1)}{| f^m(z_k) | + 1} \right) \quad \rightarrow 0 \quad \text{as} \quad k \rightarrow \infty.
\]

An argument similar to the proof of (4.4) with \(\varepsilon_k \) instead of \(1/(8C) \) and \(m \) instead of \(n_k \) now leads to the fact that, for large \(k \),

\[
f^m \left(B \left(0, \frac{| z_k | + 1}{8C \varepsilon_k} \right) \right) \cap G = \emptyset.
\]

Thus \(f^m(C) \cap G = \emptyset \), which is a contradiction, and so the proof of Theorem C is now complete.

ACKNOWLEDGEMENT

The authors are grateful to Professor I. N. Baker and the referee for several helpful comments.

REFERENCES

DEPARTMENT OF PURE MATHEMATICS, THE OPEN UNIVERSITY, WALTON HALL, MILTON KEYNES, MK7 6AA, ENGLAND
E-mail address: p.j.rippon@open.ac.uk
E-mail address: g.m.stallard@open.ac.uk