THE NECESSARY AND SUFFICIENT CONDITIONS FOR THE GLOBAL STABILITY OF TYPE-K LOTKA–VOLTERRA SYSTEM

TU CAIFENG AND JIANG JIFA

(Communicated by Hal L. Smith)

Abstract. This paper provides necessary and sufficient conditions for the type-K Lotka-Volterra system to have a globally asymptotically stable positive steady state. The generalization of such a result is given.

1. Introduction

Consider the Lotka-Volterra system

\[\dot{x} = \text{diag}(x)(r + Mx), \quad x \in \mathbb{R}^n_+, \quad r \in \mathbb{R}^n, \]

where

\[M = \begin{pmatrix} A & -B \\ -C & D \end{pmatrix}, \]

A is a \(k \times k \) matrix with nonnegative off-diagonal elements, \(D \) is an \((n-k) \times (n-k) \) matrix with the same property and \(B \geq 0, C \geq 0 \). We call such matrix \(M \) at y p e-K matrix and system (S) a type-K monotone system. There are many papers about the global behavior of monotone systems (S). Some interesting results are due to Takeuchi and Adachi. Let \(N = \{1, 2, \ldots, n\} \) and let \(Q \) be a subset of \(N \). In [1], Takeuchi and Adachi proved that if \(M \) is stable, then (S) has a unique nonnegative steady state \(\bar{x} \) with \(\bar{x}_q = 0 \) for \(q \in Q \) and \(\bar{x}_r > 0 \) for \(r \in N \setminus Q \), which attracts all solutions with initial conditions in \(\{x \in \mathbb{R}^n_+ : x_r > 0 \text{ for } r \in N \setminus Q\} \). They also proved that \(\bar{x} \) is globally asymptotically stable relative to \(\{x \in \mathbb{R}^n_+ : x_r > 0 \text{ for } r \in N \setminus Q\} \) if and only if

\[r_q + \sum_{j=1}^{n} m_{qj} \bar{x}_j \leq 0 \quad \text{for all } q \in Q. \]

Concerning system (S), as pointed out by Smith [2, p. 872], one of the most interesting problems is whether or not the groups \(I = \{1, 2, \ldots, k\} \) and \(J = \{k+1, \ldots, n\} \) can coexist. The results of Hirsch [3], [4] suggest that the coexistence must take the form of a positive steady state which should be asymptotically stable. Therefore, providing conditions to guarantee that (S) has a globally asymptotically stable steady state is of great interest. Smith [2, Theorem 4.1] gave one set of

Received by the editors January 7, 1998.
1991 Mathematics Subject Classification. Primary 34C11, 92A15.
Key words and phrases. Lotka–Volterra system, steady state, global stability.
This project was supported by the National Natural Science Foundation of China.

©1999 American Mathematical Society
sufficient conditions for the existence of such a steady state which can only be applied to nonobligate systems \((r > 0)\). The present authors generalized Smith’s result to obligate systems in [5].

The goal of the present paper is to provide the necessary and sufficient conditions for \((S)\) to have a globally asymptotically stable steady state in the positive orthant. Obviously, the essential condition for \((S)\) to have a globally asymptotically stable steady state is that \(M\) is stable. Actually, in this paper, we shall consider the more general system

\[(S^*) \quad \dot{x} = \text{diag}(x)f(x), \quad x \in \mathbb{R}^n_+,
\]

where \(Df(x)\) is a type-\(K\) matrix as in (T). We call such system \((S^*)\) a general type-\(K\) monotone system. Under the suitable condition

\[(C) \quad Df(x) \leq K M, \quad \text{for all} \quad x \in \mathbb{R}^n_+,
\]

where \(M\) is a type-\(K\) matrix as in (T) and stable, we shall present necessary and sufficient conditions for \((S^*)\) to have a globally asymptotically stable steady state. “\(\leq_K\)” will be defined in the next section. Let \(s(M) = \max \text{ Re } \lambda\), where \(\lambda\) runs through the eigenvalues of \(M\). \(M\) is stable, that is, \(s(M) < 0\) if and only if the principal minors of \(M^+\) alternate in sign as follows:

\[
(-1)^k \begin{vmatrix}
 a_{i1}^+ & \cdots & a_{ik}^+ \\
 \vdots & \ddots & \vdots \\
 a_{k1}^+ & \cdots & a_{kk}^+
\end{vmatrix} > 0, \quad 1 \leq k \leq n,
\]

where \(a_{ij}^+ = |a_{ij}|\) for \(i \neq j\) and \(a_{ii}^+ = a_{ii}\).

2. The Main Result

In this section, we will agree on some notation and establish some conventions. Then, the main result will be stated.

Let \(\mathbb{R}_+^n = \{x \in \mathbb{R}^n : x_i \geq 0, 1 \leq i \leq n\}\) denote the nonnegative orthant and \(\text{Int } \mathbb{R}_+^n = \{x \in \mathbb{R}_+^n : x_i > 0, 1 \leq i \leq n\}\) denote its interior. \(x > 0\) means \(x_i > 0\) for all \(i\).

In this paper, \(K\) is a proper cone in \(\mathbb{R}^n\) which is a nonempty closed convex subset of \(\mathbb{R}^n\) with the property \(K \cap (-K) = \{0\}\). If the partial order relation is generated by a cone \(K\), we write \(x \leq_K y\) whenever \(y - x \in K\). Then \(K = R^n_+ \times (-R^{n-k}_+)^\ast\) is a cone. Let \(x^1 \in \mathbb{R}^k, x^2 \in \mathbb{R}^{n-k}\); it is convenient to write \(x = (x^1, x^2) \in \mathbb{R}^n\). Then \(x \leq_K y\), where \(x = (x^1, x^2), y = (y^1, y^2)\) implies \(x^1 \leq y^1, x^2 \geq y^2\). For two \(n \times n\) type-\(K\) matrices \(M_1\) and \(M_2\), \(M_1 \geq_K M_2\) if and only if \(A_1 \geq A_2, B_1 \geq B_2, C_1 \geq C_2, D_1 \geq D_2\).

Let \(N = \{1, 2, \cdots, n\}, I = \{1, 2, \cdots, k\}\) and \(J = \{k + 1, \cdots, n\}\), where \(n\) is the dimension of our Euclidean space \(\mathbb{R}^n\). If \(L, P\) are nonempty sets of \(N\) such that \(L \supset I\) and \(P \supset J\), then \(\bar{L} = N \setminus L\) and \(\bar{P} = N \setminus P\) denote their complementary sets in \(N\). \(u\) will always represent vectors in \(\mathbb{R}^L\)-dimensional Euclidean space \(\mathbb{R}^L_+\), \(v\) in \(\mathbb{R}^L\)-dimensional Euclidean space \(\mathbb{R}^L_+\), \(w\) in \(\mathbb{R}^P_+\) and \(z\) in \(\mathbb{R}^P_+\). \(\sharp L\) represents the cardinality of \(L\). \(\sharp \bar{L}, \sharp \bar{P}\) and \(\sharp \bar{P}\) have the same meanings respectively.

Without loss of generality, we may assume \(L = \{1, 2, \cdots, k, k + 1, \cdots, l\}\), \(k < l < n\), and \(P = \{n - p + 1, \cdots, k + 1, \cdots n\}\), \(p > n - k\). Let \(x = (u, v)\) and
\[f(x) = (f_L(u,v), f_L(u,v)). \] Then we can rewrite the system \((S^*)\) as

\[
(S_1) \quad \begin{cases}
\dot{u} = \text{diag}(u) f_L(u,v), \\
\dot{v} = \text{diag}(v) f_L(u,v),
\end{cases} \quad u \in R^2_+, \quad v \in R^2_+.
\]

Similarly, let \(x = (z,w)\) and \(f(x) = (f_P(z,w), f_P(z,w))\). Then we can rewrite the system \((S^*)\) as

\[
(S_2) \quad \begin{cases}
\dot{z} = \text{diag}(z) f_P(z,w), \\
\dot{w} = \text{diag}(w) f_P(z,w),
\end{cases} \quad z \in R^2_+, \quad w \in R^2_+.
\]

Setting \(v = 0\) and \(z = 0\) in \((S_1)\) and \((S_2)\) respectively, we obtain two subsystems

\[
(S_L) \quad \dot{u} = \text{diag}(u) f_L(u,0), \quad u \in R^2_+,
\]

and

\[
(S_P) \quad \dot{w} = \text{diag}(w) f_P(0, w), \quad w \in R^2_+.
\]

Because \(Df(u,v)\) and \(Df(z,w)\) are type-\(K\) matrices, \(Df_L(u,0)\) is a type-\(K_1\) submatrix of \(Df(u,0)\) and \(Df_P(0,w)\) is a type-\(K_2\) submatrix of \(Df(0,w)\), where \(K_1 = R^2_+ \times (-R^{l-k}_+)\) and \(K_2 = R^{l-k}_+ \times (-R^{l-k}_+)\).

We write \(\phi_i(x)\) for the unique solution \(x(t)\) of \((S^*)\) satisfying \(x(0) = x; \phi_i^0(u), \phi_i^0(w)\) are the unique solutions \(u(t)\) of \((S_L)\) and \(w(t)\) of \((S_P)\) respectively, satisfying \(u(0) = u\) and \(w(0) = w\). \(\{\phi_i^0(u)\}_i\) consists of components \(\{\phi_i^0(u)\}_i\), of \(\phi_i^0(u)\) for all \(i \in I\), and \((\phi_i^0(w))_j\) is defined similarly.

Similar to the result of Takeuchi and Adachi, we have proved the following theorem [7, Theorem 4.1] for the type-\(K\) system \((S^*)\).

Theorem 2.1. Assume that the system \((S^*)\) is type-\(K\) monotone and the condition \((C)\) holds. If there exists a nonnegative steady state \(c \in R_+^n\) with \(c_Q > 0\), \(c_Q = 0\) where we agree on \(c = 0\) if \(Q = \emptyset\), then \(c\) attracts all solutions with initial conditions in \(\{x \in R_+^n : x_Q > 0\}\) if and only if \(f(c) \leq 0\).

Our main result is as follows.

Theorem A. Assume that the condition \((C)\) holds. Then the type-\(K\) monotone system \((S^*)\) has a unique positive steady state which is globally asymptotically stable relative to \(\text{Int} R_+^n\) if and only if \((S^*)\) satisfies the following conditions:

1. There exists \(L \subset N\) with \(L \supset I\) such that \((S_L)\) has a positive steady state \(w^0\) and \(f_L(w_0^0,0) > 0\).
2. There exists \(P \subset N\) with \(P \supset J\) such that \((S_P)\) has a positive steady state \(w^0\) and \(f_P(0,w^0) > 0\).

3. **The proof of the main result**

It is essential to establish some preliminary results before giving the proof of Theorem A.

Theorem 3.1 (Kamke Theorem). Assume that the system \((S^*)\) is type-\(K\) monotone, and \(x(t), y(t)\) are the solutions of \((S^*)\) defined on \(a \leq t \leq b\) with \(x(a) \leq_K y(a)\). Then \(x(t) \leq_K y(t)\) for all \(t \in [a, b]\).

Theorem 3.2. Let the system \((S^*)\) be a type-\(K\) monotone system and let \(f(x) \geq_K 0\) for some \(x \in R^n_+\). Then \(\{\phi_i(x)\}_i\) is nondecreasing if \(i \in I\) and \(\{\phi_i(x)\}_j\) is nonincreasing if \(j \in J\) for all \(t \geq 0\) for which the solution exists. A similar result holds if \(f(x) \leq_K 0\).
Theorem 3.1 is extended in a natural way from cooperative systems to type-\(K\) monotone systems (see [2, Theorem 2.4]). Theorem 3.2 is a criterion for the monotonicity of every component of a solution which is generalized from a cooperative system given by Selgrade [6] to a type-\(K\) monotone system ([2, p.862]).

The proof of Theorem A (Necessity). Since the condition (C) holds, every solution of the type-\(K\) monotone system (\(S^*\)) is bounded by Proposition 4.4 in [7]. Let \(p = (p_1, p_2)\) be a positive steady state of (\(S^*\)) which is globally asymptotically stable in Int \(R^p_+\). Then the subsystems (\(S_I\)) and (\(S_J\)) have positive steady states \(x_1^0\) and \(x_2^0\), respectively, and \(x_1^0 \geq p_1, x_2^0 \geq p_2\) by Proposition 3.3 in [2].

We claim that \(J_1 = \{ j \in J : f_j(x_1^0, 0) > 0 \} \neq \emptyset\). Otherwise, \(f_j(x_1^0, 0) \leq 0\), which implies \(f(x_1^0, 0) \leq 0\). Then \((x_1^0, 0)\) and \(p\) are both globally asymptotically stable relative to Int \(R^p_+\) by Theorem 2.1 and the assumption. This is a contradiction and proves our claim.

Set \(I_1 = I \cup J_1\). We consider the subsystem

\[(S_{I_1}) \]
\[\dot{x}_{I_1} = \text{diag}(x_{I_1}) f_{I_1}(x_{I_1}, 0). \]

Obviously, \(f_{I_1}(x_1^0, 0) \leq K_1, 0\) where \(K_1 = R^k_+ \times (-R^p_{\#J_1})\). Then there exists sufficiently small \(v \in \text{Int} \bigcap \{ x \in R^k_+ : f_I(x, 0) \geq 0 \}\) because of \(\partial f_I/\partial x_{J_1} \leq 0 \) and \(f_I(x_1^0, 0) > 0 \) because of the continuity of \(f\). It follows that \(\phi^{I_1}_{I_1}(x_1^0, v) \) is type-\(K_1\) nonincreasing from Theorem 3.2. Choose a small \(v\) such that \((x_1^0, v) \geq K_1 (p_1, p_{J_1})\). Then \(\phi^{I_1}_{I_1}(x_1^0, v) \geq \phi^{I_1}_{I_1}(p_{J_1})\) by Theorem 3.1, that is, \(x_1^0 \geq \{ \phi^{I_1}_{I_1}(x_1^0, v) \}_{I_1} \geq \{ \phi^{I_1}_{I_1}(p_{J_1}) \}_{I_1} \) and \(v \leq \{ \phi^{I_1}_{I_1}(x_1^0, v) \}_{I_1} \leq \{ \phi^{I_1}_{I_1}(p_{J_1}) \}_{I_1} \) for all \(t > 0\).

It is easy to prove that \(f_{I_1}(p_{J_1}, 0) \geq K_1, 0\). In fact, \(f_I(p_{J_1}, 0) \geq f_{I_1}(p_{J_1}, p_{J_1}) = 0\) because of \(\partial f_{I_1}/\partial x_{J_1} \leq 0 \) and \(f_{I_1}(p_{J_1}, p_{J_1}) \) is type-\(K_1\) nondecreasing from Theorem 3.2. Then \(\phi^{I_1}_{I_1}(p_{J_1}) \) is type-\(K_1\) nondecreasing from Theorem 3.2. Then \(\{ \phi^{I_1}_{I_1}(p_{J_1}) \} \geq \phi_{I_1}^{I_1}(x_1^0, v) \), \(v \leq \{ \phi^{I_1}_{I_1}(x_1^0, v) \}_{I_1} \leq p_{J_1}\) for \(t > 0\). Thus we have \(x_1^0 \geq \{ \phi^{I_1}_{I_1}(x_1^0, v) \}_{I_1} \geq p_{J_1}\) and \(v \leq \{ \phi^{I_1}_{I_1}(x_1^0, v) \}_{I_1} \leq p_{J_1}\). It follows from the type-\(K_1\) increase of \(\phi^{I_1}_{I_1}(x_1^0, v)\) that

\[\lim_{t \to +\infty} \phi^{I_1}_{I_1}(x_1^0, v) = u_{I_1}. \]

Clearly, \(u_{I_1} > 0\), that is, \((S_{I_1})\) has a positive steady state \(u_{I_1}\).

We claim that \(f_{I_1}(u_{I_1}, 0) \leq 0\) is impossible. If not, then \((u_{I_1}, 0)\) is globally asymptotically stable by Theorem 2.1, contradicting the assumption. Thus, there exists \(J_2 = \{ j \in I_1 : f_j(u_{I_1}, 0) > 0 \} \neq \emptyset\). If \(J_2 = I_1\), then we choose \(L = I_1\). Otherwise, setting \(L = I_2 = I_1 \cup J_2\), we consider the subsystem

\[(S_{I_2}) \]
\[\dot{x}_{I_2} = \text{diag}(x_{I_2}) f_{I_2}(x_{I_2}, 0). \]

Since \(f_j(u_{I_1}, 0, 0) > 0\) for \(j \in J_2\) and \(f_j(u_{I_2}, 0, 0) = 0\) for \(j \in I_1\), we have \(f_{I_2}(u_{I_1}, 0, 0) \leq K_2, 0\) where \(K_2 = R^k_+ \times (-R^p_{\#(J_1 \cup J_2)})\). It is easy to see that \(f_j(p_{J_1}, p_{J_2}, 0) = f_j(p_{J_1}, p_{J_2}, p_{J_2}) = 0\) for \(j \in J_1 \cup J_2\) because of \(\partial f_j/\partial x_{J_2} \leq 0\) for \(j \in J_1 \cup J_2\) and \(f_j(p_{J_1}, p_{J_2}, 0) \geq f_j(p_{J_1}, p_{J_2}, p_{J_2}) = 0\) for \(j \in I\). Then \(f_{I_2}(p_{J_1}, p_{J_2}, 0) \geq K_2, 0\) and \(\phi^{I_2}_{I_2}(x_1^0, v) \geq p_{J_2}\) for \(t > 0\). Thus we have \(x_1^0 \geq \{ \phi^{I_2}_{I_2}(x_1^0, v) \}_{I_2} \geq p_{J_2}\) and \(v \leq \{ \phi^{I_2}_{I_2}(x_1^0, v) \}_{I_2} \leq p_{J_2}\). It follows from the type-\(K_2\) increase of \(\phi^{I_2}_{I_2}(x_1^0, v)\) that

\[\lim_{t \to +\infty} \phi^{I_2}_{I_2}(x_1^0, v) = u_{I_2}. \]

Similarly, \(f_{I_2}(u_{I_2}, 0) \leq 0\) cannot hold. Then there exists \(J_3 = \{ j \in I_2 : f_j(u_{I_2}, 0) > 0 \} \neq \emptyset\). This process must stop at most the \((n - k - 1)\)th-step. We assume the process stops at the \(n\)th-step. Let \(L = I \cup J_1 \cup \cdots \cup J_n\). Then the subsystem \((S_L)\) has a positive steady state \(u^0\) such that \(f_L(u^0, 0) > 0\). Clearly, \(L \supset I\).

The necessity of (2) can be proved by using the same method.
(Sufficiency) In fact, the main idea to prove the sufficiency is taken from [5], [7]. First, we prove that if \((S^*)\) has a positive steady state \(\bar{x}\), then \(\bar{x}\) is globally asymptotically stable in \(\text{Int} R^n_+\).

Since \(\bar{x}\) is a positive steady state, for any \(x \in R^n_+\), we have

\[
f(x) - f(\bar{x}) = \left[\int_0^1 Df(sx + (1-s)\bar{x})ds\right](x - \bar{x}).
\]

The condition (C) shows that

\[
\int_0^1 Df(sx + (1-s)\bar{x})ds \leq K M,
\]

which implies that

\[
\text{diag}(x) f(x) \leq K \text{diag}(x) M(x - \bar{x}) \quad \text{for} \quad x \geq_K \bar{x}, \quad x \geq 0,
\]

and

\[
\text{diag}(x) f(x) \geq K \text{diag}(x) M(x - \bar{x}) \quad \text{for} \quad x \leq_K \bar{x}, \quad x \geq 0.
\]

Make a Lotka–Volterra system

\[(S) \quad \dot{x} = \text{diag}(x)(r + Mx), \quad x \in R^n_+ \quad \text{and} \quad r \in R^n,
\]

where \(r = -M\bar{x}\). Obviously, \(\bar{x}\) is a positive steady state for \((S)\) and attracts all points in \(\text{Int} R^n_+\) by the result of Takeuchi and Adachi [1] mentioned in the introduction. Hence it follows that

\[
\lim_{t \to +\infty} \phi_t(x) = \bar{x} \quad \text{for} \quad x \in \text{Int} R^n_+ \quad \text{with} \quad x \geq_K \bar{x} \quad \text{or} \quad x \leq_K \bar{x}
\]

from standard differential inequality arguments.

For any \(x \in \text{Int} R^n_+\), there exist \(y \geq_K \bar{x}\) and \(y > 0\), \(z \leq_K \bar{x}\) and \(z > 0\) such that \(z \leq_K x \leq_K y\). Applying Theorem 3.1, we have

\[
\phi_t(z) \leq_K \phi_t(x) \leq_K \phi_t(y) \quad \text{for} \quad t \geq 0.
\]

Because

\[
\lim_{t \to +\infty} \phi_t(z) = \lim_{t \to +\infty} \phi_t(y) = \bar{x},
\]

we have established that

\[
\lim_{t \to +\infty} \phi_t(x) = \bar{x} \quad \text{for} \quad x \in \text{Int} R^n_+.
\]

Since \(Df(\bar{x}) \leq_K M\), we have \(s(Df(\bar{x})) \leq s(M) < 0\) from Perron-Frobenius theory (see [2, Thm.2.2]) which implies that \(\bar{x}\) is asymptotically stable. Thus \(\bar{x}\) is globally asymptotically stable.

Next, we prove that \((0, w^0) \leq_K (u^0, 0)\).

Since \(u^0\) and \(w^0\) are positive steady states of \((S_L)\) and \((S_P)\) respectively, we deduce that

\[
\lim_{t \to +\infty} \phi_t^L(u) = u^0 \quad \text{for} \quad u \in \text{Int} R^n_+^L,
\]

and

\[
\lim_{t \to +\infty} \phi_t^P(w) = w^0 \quad \text{for} \quad w \in \text{Int} R^n_+^P.
\]
from the above result. It is easy to choose \(u \in \text{Int } R^+_L \) and \(w \in \text{Int } R^+_P \) such that \((0, w) \leq_K (u, 0)\). Then
\[
(0, \phi^P_t (w)) \leq_K (\phi^L_t (u), 0) \quad \text{for } t \geq 0
\]
by Theorem 3.1. Therefore, we conclude that
\[
(0, w^0) \leq_K (u^0, 0).
\]

Finally, we prove that \((S^+)\) has a unique positive steady state which is globally asymptotically stable in \(R^+_0 \).

Since \((0, w^0) \leq_K (u^0, 0)\), we have \((0, w^0) \leq_K (z, w^0) \leq_K (u^0, 0)\) for sufficiently small \(z > 0 \). From condition (2), for above \(z \), it is easy to obtain that \(f(z, w^0) \geq_K 0 \) from the continuity and type-\(K \) monotonicity of \(f \). Then \(\phi_t(z, w^0) \) is type-\(K \) nondecreasing for \(t \geq 0 \) by Theorem 3.2. We deduce that \((0, w^0) \leq_K \phi_t(z, w^0) \leq_K (u^0, 0)\) for all \(t \geq 0 \) from Theorem 3.1. Hence, \(\phi_t(z, w^0) \) is bounded. Consequently, \(\phi_t(z, w^0) \) converges to some point \(\tilde{x} \) as \(t \to +\infty \) and \((0, w^0) \leq_K \tilde{x} \leq_K (u^0, 0)\). It is clear that \(\tilde{x}_I \geq \{(z, w^0)^I \} \geq 0 \). Similarly, from the condition (1), for sufficiently small \(v \), we have \(\phi_t(u^0, v) \to \tilde{x} \) as \(t \to +\infty \), \((0, w^0) \leq_K \tilde{x} \leq_K (u^0, 0) \) and \(\tilde{x}_J \geq \{(u^0, v)^J \} \geq 0 \).

Choose \(z > 0, v > 0 \) to be small enough such that \((z, w^0) \leq_K (u^0, v)\). Then \(\phi_t(z, w^0) \leq_K \phi_t(u^0, v) \) for \(t > 0 \). So \(\tilde{x} \leq_K \tilde{x} \), namely, \((\tilde{x}_I, \tilde{x}_J) \leq_K (\tilde{x}_I, \tilde{x}_J) \). This means

\[
\tilde{x}_I \geq \tilde{x}_I > 0, \quad \tilde{x}_J \geq \tilde{x}_J > 0.
\]

Hence, we conclude that \(\tilde{x} > 0 \) and \(\tilde{x} > 0 \). From the first paragraph of the proof of sufficiency, it follows that \(\tilde{x} = \tilde{x} \) which is globally asymptotically stable in \(R^+_0 \).

The proof is completed. \(\square \)

ACKNOWLEDGMENT

The authors would like to thank the referee for valuable suggestions.

REFERENCES

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA, HEFEI, PEOPLE’S REPUBLIC OF CHINA

E-mail address: jiangjf@math.ustc.edu.cn