NORMALIZERS OF THE CONGRUENCE SUBGROUPS
OF THE HECKE GROUP G_5

MONG-LUNG LANG AND SER-PEOW TAN

(Communicated by Ronald M. Solomon)

Abstract. Let $\lambda = 2 \cos(\pi/5)$ and let G be the Hecke group associated to λ. In this article, we show that for τ a prime ideal in $\mathbb{Z}[\lambda]$, the congruence subgroups $G_0(\tau)$ of G are self-normalized in $PSL_2(\mathbb{R})$.

1. Introduction

In this paper, we continue our study into the extent to which properties of the modular group hold for the Hecke groups; see [CLLT], [LLT1], [LLT2] for some previous results. We are, in particular, interested in the Hecke group G_5 which we denote by G and its congruence subgroups $G_0(\tau)$ of prime level τ. Our main result is that the groups $G_0(\tau)$ are self-normalized in $PSL_2(\mathbb{R})$. This contrasts with the case of the congruence subgroups $\Gamma_0(p)$ of the modular group Γ which admit Atkin-Lehner involutions, so have strictly larger normalizers; see for example [AL].

We recall the following definitions, notation and results. For $q \geq 4$, the Hecke groups G_q are the (discrete) subgroups $\langle w, u_q \rangle$ of $PSL_2(\mathbb{Z}[\lambda_q])$ where $\lambda_q = 2 \cos(\pi/q)$ and

$$w = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad u_q = \begin{pmatrix} 1 & \lambda_q \\ 0 & 1 \end{pmatrix}.$$

When $q = 3$, we recover the modular group Γ so the above can be thought of as a natural generalization of Γ. Alternatively, we can interpret the generalization as G_q being maximal discrete subgroups whose entries are in some extension of \mathbb{Z}. Finally, we have the geometric interpretation: Γ is a $(2,3,\infty)$ triangle group and the Hecke group G_q is a $(2,q,\infty)$ triangle group.

Let \mathcal{A} be an ideal of $\mathbb{Z}[\lambda_q]$. We define

$$G_0(\mathcal{A}) = \{ \sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G_q | c \in \mathcal{A} \}.$$

Again, this is a natural generalization of the congruence subgroups $\Gamma_0(n)$ of Γ. It works because the elements of G_q sit naturally in the ring $\mathbb{Z}[\lambda_q]$.

Recall that G_q is commensurable with $PSL_2(\mathbb{Z})$ if and only if $q = 4$ or 6. The elements of such groups are completely known; see [P], for example. The normalizer of $G_0(\mathcal{A})$ in $PSL_2(\mathbb{R})$ can be determined [LT].

Received by the editors January 10, 1998.

1991 Mathematics Subject Classification. Primary 11F06.

Key words and phrases. Congruence subgroups, Hecke groups.
Suppose G_q is not commensurable with $PSL_2(\mathbb{Z})$. By the results of Leutbecher, [L1], [L2], $\mathbb{Q}[\lambda] \cup \{\infty\}$ is the set of cusps of G_q if and only if $q = 5$. Also, 5 is the only q other than 4, 6 for which $\mathbb{Q}[\lambda]$ is a quadratic field. For all other q’s, the degree is > 2. As a consequence, $q = 5$ is the next most workable and interesting q. Some of the classical results on the modular group can be generalized to $G = G_5$ ([CLLT], [LLT2]). The main result in this paper is the following:

Main Theorem. If (τ) is a prime ideal of $\mathbb{Z}[\lambda] = \mathbb{Z}[\lambda_5]$, then $G_0(\tau) \leq G_5 = G$ is self-normalized in $PSL_2(\mathbb{R})$.

The main facts used in the proof are:

(a) $\mathbb{Z}[\lambda]$ is a principal ideal domain.
(b) The set of cusps of G is $\mathbb{Q}[\lambda] \cup \{\infty\}$ ([L1], [L2]). Furthermore, if $x \in \mathbb{Q}[\lambda]$ is a cusp, x has a unique reduced form $x = \frac{a}{b}$ [LLT1]. By definition, this means that $a, b \in \mathbb{Z}[\lambda]$ with $b > 0$ and there exists $c, d \in \mathbb{Z}[\lambda]$ such that $\begin{pmatrix} a & c \\ b & d \end{pmatrix} \in G$.

Clearly, $(a, b) = 1$ so that if $x = \frac{a}{b}$ with $(a’, b’) = 1$, then $a = \mu a’, b = \mu b’$ where μ is a unit in $\mathbb{Z}[\lambda]$.

(c) (Proposition 6 of [LLT1]) Suppose x_i, x_j are G-rationals with reduced form a_i/b_i and a_j/b_j, respectively, and suppose that $x_i < x_j$. Then the following statements are equivalent:

(i) $\begin{pmatrix} a_i & a_j \\ b_i & b_j \end{pmatrix} \in G$;
(ii) (x_i, x_j) is an even line, that is, it is the image of the complete hyperbolic geodesic with ends at 0 and ∞ under the action of some $A \in G$;
(iii) $a_j b_i - a_i b_j = 1$.
(d) (Corollary 5 of [LLT1]) $\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \in G$ if and only if $b = m\lambda, m \in \mathbb{Z}$. Similarly, $\begin{pmatrix} 1 & 0 \\ c & 1 \end{pmatrix} \in G$ if and only if $c = n\lambda, n \in \mathbb{Z}$.

The rest of this paper is organized as follows. In the next section, we give the possible forms which an element A of $N(G_0(\tau))$ can take, breaking it into different cases. In section 3, we complete the proof of the main theorem in the case where the group $G_0(\tau)$ has 2 inequivalent cusps. By [CLLT], this occurs when the rational prime p lying under τ is 5 or is congruent to ± 1 (mod 10). Finally, in section 4, we complete the proof of the main theorem in the case where the group $G_0(\tau)$ has $p + 1$ cusps. By [CLLT], this occurs when the rational prime p lying under τ is congruent to ± 3 (mod 10) or $p = 2$.

2. **Upper bound for $N(G_0(\tau))$**

Let I be a prime in $\mathbb{Z}[\lambda] = \mathbb{Z}[\lambda_5]$. Since $\mathbb{Z}[\lambda]$ is a principal ideal domain, $I = (\tau)$ for some τ. Note that we may assume that τ is positive. Let p be the positive rational prime which lies below τ. It is an easy matter to check that p is square free in $\mathbb{Z}[\lambda]$ if and only of $p \neq 5$.

Denote by $N(G_0(\tau))$ the normalizer of $G_0(\tau)$ in $PSL_2(\mathbb{R})$. For any

$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in N(G_0(\tau)),$
we have
\[(2.1) \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \begin{pmatrix} 1 - ac\lambda & a^2\lambda \\ -c^2\lambda & 1 + ac\lambda \end{pmatrix} \in G_0(\tau), \]
\[(2.2) \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 + dc\lambda & d^2\lambda \\ -c^2\lambda & 1 - dc\lambda \end{pmatrix} \in G_0(\tau), \]
\[(2.3) \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ p\lambda & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \begin{pmatrix} 1 + bdp\lambda & -b^2p\lambda \\ d^2p\lambda & 1 - bdp\lambda \end{pmatrix} \in G_0(\tau), \]
\[(2.4) \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} \begin{pmatrix} 1 & 0 \\ p\lambda & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 - abp\lambda & -b^2p\lambda \\ a^2p\lambda & 1 + abp\lambda \end{pmatrix} \in G_0(\tau). \]
Suppose that \(x \neq 0 \). Since \(\lambda \in \mathbb{R} \setminus \mathbb{Q} \), for any \(\epsilon > 0 \), there exist \(k \) and \(l \) such that
\[
\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}^k \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix}^l = \begin{pmatrix} 1 & \delta \\ 0 & 1 \end{pmatrix} = \sigma \in N(G_0(\tau)),
\]
where \(0 < |\delta| < \epsilon \). As a consequence,
\[
\sigma \begin{pmatrix} 1 & 0 \\ p\lambda & 1 \end{pmatrix} \sigma^{-1} = \begin{pmatrix} 1 + \delta p\lambda & \delta^2 p\lambda \\ p\lambda & 1 - \delta p\lambda \end{pmatrix} \in G_0(\tau).
\]
This implies that \(G_0(\tau) \) is not discrete, giving a contradiction. Hence \(x = 0 \) and \(B^{-1}A \in G_0(\tau) \). Since \(B \in G_0(\tau) \), \(A \in G_0(\tau) \).

Suppose \(c = 0 \). From the above argument, we have \(A \in G_0(\tau) \).

Lemma 2. Suppose \(p \neq 5 \), \(A \in N(G_0(\tau)) \). If \(c = 0 \), then \(A \in G_0(\tau) \).

Proof. Applying (2.1), (2.2), (2.3), and (2.4) to \(A \), we have
\[
\begin{pmatrix} 1 & a^2\lambda \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & d^2\lambda \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 + bdp\lambda & -b^2p\lambda \\ d^2p\lambda & 1 - bdp\lambda \end{pmatrix}, \begin{pmatrix} 1 & abp\lambda \\ a^2p\lambda & 1 + abp\lambda \end{pmatrix}
\]
are elements of \(G_0(\tau) \). By Corollary 5 of [LLT1], \(a^2 \) and \(d^2 \) are elements in \(\mathbb{Z} \). Since \(ad = 1 \), \(a = d = \pm 1 \). Multiplying by \(-I \) if necessary, we may assume that \(a = d = 1 \). Since \(bdp = bp \in \mathbb{Z}[\lambda] \), \(b = k/p \) for some \(k \in \mathbb{Z}[\lambda] \). Since \(b^2p \in \mathbb{Z}[\lambda] \), \(k^2/p \in \mathbb{Z}[\lambda] \). It follows that \(k \) is a multiple of \(p \) (\(p \) is square free). Consequently, \(b = k/p = x + y\lambda \in \mathbb{Z}[\lambda] \) and \(A \) is of the form
\[
A = \begin{pmatrix} 1 & x + y\lambda \\ 0 & 1 \end{pmatrix}.
\]
Applying the proof of Lemma 1, we conclude that \(A \in G_0(\tau) \).

Remark. If \(p = 5 \), \(\tau = 2 + \lambda \) and by direct calculation, we can show that if \(c = 0 \), then \(A \) is of the form \(A = \begin{pmatrix} 1 & k/\sqrt{5} \\ 0 & 1 \end{pmatrix} \), where \(k \in \mathbb{Z}[\lambda] \).

Lemma 3. Suppose \(A \in N(G_0(\tau)) \). If \(b = 0 \), then \(A \in G_0(\tau) \).

Proof. Applying (2.1), (2.2), (2.3) and (2.4) to \(A \), we have
\[
\begin{pmatrix} 1 & ac\lambda \\ -c^2\lambda & 1 + ac\lambda \end{pmatrix}, \begin{pmatrix} 1 & dc\lambda \\ -c^2\lambda & 1 - dc\lambda \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ d^2\lambda & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ a^2\lambda & 1 \end{pmatrix}
\]
are elements of \(G_0(\tau) \). By Corollary 5 of [LLT1], \(a^2 \) and \(d^2 \) are elements in \(\mathbb{Z} \). Since \(ad = 1 \), \(a = d = \pm 1 \). As a consequence, \(c \in \mathbb{Z}[\lambda] \). This implies that \(A \in P\text{SL}_2(\mathbb{Z}[\lambda]) \). By Lemma 1, \(A \in G_0(\tau) \).

Lemma 4. Suppose \(p \neq 5 \). Let \(A \in N(G_0(\tau)) \). Then \(A \) is of the form
\[
\begin{pmatrix} 0 & -1/\sqrt{p} \\ \sqrt{p} & h\sqrt{p} \end{pmatrix} \text{ if } a = 0, \begin{pmatrix} h\sqrt{p} & 1/\sqrt{p} \\ -\sqrt{p} & 0 \end{pmatrix} \text{ if } d = 0,
\]
where \(h \in \mathbb{Z}[\lambda] \).

Proof. Suppose \(a = 0 \). Applying (2.1), (2.2), (2.3) and (2.4) to \(A \), we have,
\[
\begin{pmatrix} 1 & 0 \\ -c^2\lambda & 1 \end{pmatrix}, \begin{pmatrix} 1 & dc\lambda \\ -c^2\lambda & 1 - dc\lambda \end{pmatrix}, \begin{pmatrix} 1 & bdp\lambda \\ d^2p\lambda & 1 - bdp\lambda \end{pmatrix}, \begin{pmatrix} 1 & -b^2p\lambda \\ 0 & 1 \end{pmatrix}
\]
are elements of \(G_0(\tau) \). By Corollary 5 of [LLT1], \(c^2 = kp \) for some \(k \in \mathbb{Z} \), \(b^2p = l \in \mathbb{Z} \). Hence \(c^2b^2p = lkp \), \(k \in \mathbb{Z} \). Since \(bc = -1 \), one has \(k = 1, l = 1 \). It follows that
$c = \pm \sqrt{b},$ $b = \mp 1/\sqrt{b}$. Multiplying by $-I$ if necessary, we may assume that $c = \sqrt{b}$.
Since $dc \in \mathbb{Z}[\lambda], d = s/\sqrt{s}$ for some $s \in \mathbb{Z}[\lambda]$. Since $d^2 \in \mathbb{Z}[\lambda], d^2 = s^2/p \in \mathbb{Z}[\lambda].$
Since p is square free ($p \neq 5$), $s = hp$ for some $h \in \mathbb{Z}[\lambda]$. Hence $d = h\sqrt{p}$ and
\[
A = \left(\begin{array}{cc} 0 & -1/\sqrt{p} \\ \sqrt{p} & h\sqrt{p} \end{array} \right).
\]
Suppose $d = 0$. Applying (2.1), (2.2), (2.3) and (2.4) to A^{-1}, we have,
\[
A^{-1} = \left(\begin{array}{cc} 0 & -1/\sqrt{p} \\ \sqrt{p} & h\sqrt{p} \end{array} \right).
\]
This completes the proof of the lemma. □

Remark. If $p = 5$, by direct calculation, we can show that A is of the form
\[
\left(\begin{array}{cc} 0 & -1/\sqrt{5} \\ \sqrt{5} & h \end{array} \right) \text{ if } a = 0, \quad \left(\begin{array}{cc} h & 1/\sqrt{5} \\ -\sqrt{5} & 0 \end{array} \right) \text{ if } d = 0.
\]

Lemma 5. Let $A \in N(G_0(\tau))$. Suppose $p \neq 5$ and $abcd \neq 0$. Then either $A \in G_0(\tau)$ or $b/a \in \mathbb{Q}(\lambda)$ and the denominator of the reduced form of b/a is a multiple of τ.

Proof. By (2.1), (2.2), (2.3) and (2.4),
\[
\left(1 - ac\lambda & a^2\lambda \\
-c^2\lambda & 1 + ac\lambda \right), \quad \left(1 + dc\lambda & d^2\lambda \\
-d^2\lambda & 1 - dc\lambda \right),
\]
\[
\left(1 + bdp\lambda & -b^2p\lambda \\
d^2p\lambda & 1 - bdp\lambda \right), \quad \left(1 - abp\lambda & -b^2p\lambda \\
a^2p\lambda & 1 + abp\lambda \right)
\]
are elements of $G_0(\tau)$. By (2.1), $c^2 \in \mathbb{Z}[\lambda]$ is a multiple of τ. It follows easily that one of the following holds:
(a) $c = st\lambda$ where $s \in \mathbb{Z}[\lambda],$
(b) $c = st\sqrt{w}$ where $s \in \mathbb{Z}[\lambda],$
(c) $c = st\sqrt{w}$ where $(w, \tau) = 1$, w is square free,
(d) $c = st\sqrt{w}$ where $(w, \tau) = 1$ and $s, w \in \mathbb{Z}[\lambda], w$ is square free.

(a) By (2.1) $ac \in \mathbb{Z}[\lambda]$. This implies that $a = r/s\tau$, where $r \in \mathbb{Z}[\lambda]$. By (2.1) $a^2 = (r/s\tau)^2 \in \mathbb{Z}[\lambda]$. It follows that r is a multiple of $st\tau$. Hence $a = r/s\tau \in \mathbb{Z}[\lambda].$

By (2.2) $dc, d^2 \in \mathbb{Z}[\lambda], similar to the above, $d \in \mathbb{Z}[\lambda]$. By (2.3) $b\sqrt{p} \in \mathbb{Z}[\lambda]$. Hence $b = t/dp$ for some $t \in \mathbb{Z}[\lambda].$ Since $b^2p \in \mathbb{Z}[\lambda], t^2/dp \in \mathbb{Z}[\lambda].$ Since p is square free, pd is a divisor of t. This implies that $b \in \mathbb{Z}[\lambda]$. Summing up the above, we have $A \in N(G_0(\tau)) \cap \text{PSL}_2(\mathbb{Z}[\lambda]) = G_0(p)$ (Lemma 1).

(b) By (2.1) $ac \in \mathbb{Z}[\lambda]$. This implies that $a = r'/s\sqrt{\tau}$, where $r' \in \mathbb{Z}[\lambda].$ By (2.1) $a^2 = (r'/s\sqrt{\tau})^2 = r'^2/s^2\tau \in \mathbb{Z}[\lambda].$ Since $r' \tau$ is a prime, It follows that $s\tau|r'$. Hence $a = r\sqrt{\tau}$ where $r \in \mathbb{Z}[\lambda].$ By (2.2) $dc, d^2 \in \mathbb{Z}[\lambda].$ Using a similar argument to the above, we have $d = u\sqrt{\tau}$ where $u \in \mathbb{Z}[\lambda].$ By (2.3) $b\sqrt{p} \in \mathbb{Z}[\lambda].$ Hence $b = t'/dp = t'/up\sqrt{\tau}$ for some $t' \in \mathbb{Z}[\lambda].$ Since $b^2p \in \mathbb{Z}[\lambda], b^2p = t'^2/u\tau \in \mathbb{Z}[\lambda]$. Hence $p|u|t'$. This implies that $b = t/\sqrt{\tau}$ where $t \in \mathbb{Z}[\lambda].$ Summing up the above, we conclude that $b/a = t/\tau \in \mathbb{Q}(\lambda).$ Since $ru\tau - st = 1, (t, \tau) = 1.$ It follows that the denominator of the reduced form of b/a is a multiple of τ.

(c) Let $p = \tau r'$. As in (b), we may show
\[
a = r\sqrt{w}, b = t\sqrt{w}, d = u\sqrt{w}, \quad \text{if} \quad (\tau', w) = 1
\]
and
\[a = r\sqrt{w_1\tau'}, \quad b = t\sqrt{w_1}/\sqrt{\tau'}, \quad d = u\sqrt{w_1\tau'}, \quad \text{if} \quad (\tau', w) = \tau' \neq 1, \quad w = w_1\tau', \]
where \(r, t, u, w_1 \in \mathbb{Z}[\lambda] \).

Suppose \((\tau', w) = 1\). Since the determinant of \(A \) is 1, \(w \) is a unit. We have \(a/c = r/s\tau \). Let \(X/Y \) be the reduced form of \(a/c \). Since \(ruw - svt\tau = 1 \), \((r, s\tau) = 1\). Hence \(Y = \mu s\tau \) where \(\mu \) is a unit of \(\mathbb{Z}[\lambda] \). Since \(X/Y \) is the reduced form of a cusp, \(G \) admits an element of the form
\[B = \begin{pmatrix} X & Z \\ Y & W \end{pmatrix}. \]

Since \(Y \) is a multiple of \(\tau \), \(B \in G_0(\tau) \). Since \(A\infty = B\infty \), \(B^{-1}A \) fixes \(\infty \) and takes the following form:
\[B^{-1}A = \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \in N(G_0(\tau)) \cdot \]

By Lemma 2, \(B^{-1}A \in G_0(\tau) \). Hence \(A \in G_0(\tau) \).

Suppose \(w = w_1\tau' \). Similar to the case \((w, \tau') = 1, w_1 \) is a unit in \(\mathbb{Z}[\lambda] \). The denominator of the reduced form of \(a/c = r/s\tau \) is again a multiple of \(\tau \) and we have \(A \in G_0(\tau) \). This gives a contradiction as \(\sqrt{\tau'} \notin \mathbb{Z}[\lambda] \).

(d) As in (c), we may show
\[a = r\sqrt{w_p}, \quad b = t\sqrt{w}/\sqrt{\tau}, \quad d = u\sqrt{w_1\tau}, \quad \text{if} \quad (w, \tau) = 1, \]
\[a = r\sqrt{w_1p}, \quad b = t\sqrt{w_1}/\sqrt{p}, \quad d = u\sqrt{w_1p}, \quad \text{if} \quad (\tau', w) = \tau' \neq 1, \quad w = w_1\tau'. \]

Using a similar argument to that in case (b), we can show that the denominator of the reduced form of \(b/a \) is a multiple of \(\tau \).

3. Two Cusps

In this section, we deal with the case when \(G_0(\tau) \) has exactly 2 inequivalent cusps. By [CLLT], the prime \(p \) lying below \(\tau \) is 5 or \(p \equiv \pm 1 \pmod{10} \) and \((p) \neq (\tau) \).

Theorem 6. Let \(\tau \) be a prime such that \(G_0(\tau) \) has exactly 2 inequivalent cusps. Then \(N(G_0(\tau)) = G_0(\tau) \).

Proof. We first consider the case \(p \neq 5 \). Suppose \(N(G_0(\tau)) \neq G_0(\tau) \). Let \(A \in N(G_0(\tau)) \setminus G_0(\tau) \). Suppose \(A\infty \) is equivalent to \(\infty \) in \(G_0(\tau) \). Without loss of generality, we may assume \(A\infty = \infty \). This implies that \(c = 0 \) and \(A \in G_0(\tau) \) (Lemma 2), a contradiction. Hence we may assume that \(A\infty \) is not equivalent to \(\infty \) in \(G_0(\tau) \). Since \(G_0(\tau) \) has exactly 2 inequivalent cusps, \(A\infty \) is equivalent to 0.

Without loss of generality, we may assume that \(A\infty = 0 \). It follows by Lemma 4 that \(A \) is of the form
\[A = \begin{pmatrix} 0 & -1/\sqrt{p} \\ \sqrt{p} & h/\sqrt{p} \end{pmatrix}. \]

Let \(x = 1/\tau \in \mathbb{Q}(\lambda) \). By Leutbecher’s theorem ([L1], [L2]), \(x \) is a cusp of \(G \). By [L LT1], the reduced form for \(x \) is of the form \(c/c\tau \), where \(c \) is a unit in \(\mathbb{Z}[\lambda] \). Consequently (Proposition 6(ii) of [LLT1]), \(G_0(\tau) \) contains an element of the form
\[B = \begin{pmatrix} c & b \\ c\tau & d \end{pmatrix}. \]
Since $A \in N(G_0(\tau))$,
\[ABA^{-1} = \left(\begin{array}{cc} * & -ct/p \\ ** & * \end{array} \right) \in G_0(\tau). \]

In particular, $-ct/p \in \mathbb{Z}[\lambda]$. This is a contradiction (c and p have no common divisors in $\mathbb{Z}[\lambda]$ and $(\tau \neq (p))$). It follows that $N(G_0(\tau)) = G_0(\tau)$.

Now, suppose $p = 5$ and $N(G_0(\tau)) \neq G_0(\tau)$. In this case, $\tau = \lambda + 2$. Let $A \in N(G_0(\tau)) \setminus G_0(\tau)$. $A\infty$ is equivalent to either ∞ or 0. Without loss of generality, we may assume that either $A\infty = \infty$ or $A\infty = 0$. By the remarks following Lemma 2 and Lemma 4, A takes the form
\[A_1 = \left(\begin{array}{cc} 1 & k/\sqrt{5} \\ 0 & 1 \end{array} \right) \quad \text{if} \quad A\infty = \infty, \]
\[A_2 = \left(\begin{array}{cc} 0 & -1/\sqrt{5} \\ \sqrt{5} & h \end{array} \right) \quad \text{if} \quad A\infty = 0, \]
where $h,k \in \mathbb{Z}[\lambda]$. By [LLT1],
\[\sigma = \left(\begin{array}{cc} \lambda & -1 \\ \lambda + 2 & -\lambda \end{array} \right) \in G_0(\lambda + 2). \]

In the first case, since $A_1\sigma A_1^{-1} \in G_0(\lambda + 2)$, $k = \sqrt{5}u$ where $u \in \mathbb{Z}[\lambda]$. By Lemma 1, $A_1 \in G_0(\lambda + 2)$, a contradiction. In the second case, an easy calculation shows that $A_2\sigma A_2^{-1} \notin G_0(\lambda + 2)$, again giving a contradiction. It follows that $N(G_0(\lambda + 2)) = G_0(\lambda + 2)$.

\[\square \]

4. $p + 1$ cusps

In this section, we assume that $p \equiv \pm 3 \pmod{10}$ or $p = 2$. Then p is prime in $\mathbb{Z}[\lambda]$ so $\tau = p$. By [CLLT], $G_0(\tau)$ has $p + 1$ inequivalent cusps.

Lemma 7. Suppose $p \equiv \pm 3 \pmod{10}$. Then $-\lambda/(1 + hp\lambda) \in \mathbb{Q}(\lambda)$ is in reduced form if and only if $h = k\lambda$ for some $k \in \mathbb{Z}$. If $p = 2$, $-\lambda/(1 + 2h\lambda) \in \mathbb{Q}(\lambda)$ is in reduced form if and only if $h = k\lambda$ or $1 + k\lambda$ for some $k \in \mathbb{Z}$.

Proof. $-\lambda/(1 + hm\lambda) \in \mathbb{Q}(\lambda)$ is in reduced form if and only if $(1 + hm\lambda)/\lambda$ is in reduced form. The only cusps between 0 and λ whose reduced form has denominator λ are 1/\lambda and λ/\lambda. Hence any cusp whose reduced form has denominator λ is of the form $(u\lambda^2 + 1)/\lambda$ or $(u\lambda^2 + \lambda)/\lambda$ where $u \in \mathbb{Z}$ [LLT1]. The result follows easily from this.

\[\square \]

Lemma 8. Let p be a prime in $\mathbb{Z}[\lambda]$ such that $G_0(p)$ has $p + 1$ inequivalent cusps. Then $N(G_0(p))/G_0(p)$ is a subgroup of \mathbb{Z}_2.

Proof. Suppose $N(G_0(p)) \neq G_0(p)$. For any $A \in N(G_0(p)) \setminus G_0(p)$, by Lemmas 1, 2, 3, 4, and 5, A is of the form

(i) $A_1 = \left(\begin{array}{cc} 0 & -1/\sqrt{p} \\ \sqrt{p} & h/\sqrt{p} \end{array} \right)$ or (ii) $A_2 = \left(\begin{array}{cc} h\sqrt{p} & 1/\sqrt{p} \\ -\sqrt{p} & 0 \end{array} \right)$

or (iii) $abcd \neq 0$.

(i) Suppose A takes the form
\[A = A_1 = \left(\begin{array}{cc} 0 & -1/\sqrt{p} \\ \sqrt{p} & h/\sqrt{p} \end{array} \right). \]
A simple calculation shows that
\[
A \begin{pmatrix} 1 & 0 \\ p\lambda & 1 \end{pmatrix} A^{-1} = \begin{pmatrix} 1 - hp\lambda & -\lambda \\ h^2 p^2 \lambda & 1 + hp\lambda \end{pmatrix} \in G_0(p) .
\]
This implies that
\[
\frac{-\lambda}{1 + hp\lambda}
\]
is a reduced form. In the case \(p \neq 2\), by Lemma 7, \(h = k\lambda\) for some \(k\) in \(\mathbb{Z}\). Hence
\[
\begin{pmatrix} 1 & 0 \\ kp\lambda & 1 \end{pmatrix} A = \begin{pmatrix} 0 & -1/\sqrt{p} \\ \sqrt{p} & 0 \end{pmatrix} \in \mathcal{N}(G_0(p)) .
\]
It follows that
\[
AG_0(p) = \begin{pmatrix} 0 & -1/\sqrt{p} \\ \sqrt{p} & 0 \end{pmatrix} G_0(p) .
\]
In the case \(p = 2\), by Lemma 7, \(h = k\lambda\) or \(1 + k\lambda\). It follows easily that
\[
\begin{pmatrix} 1 & 0 \\ 2k\lambda & 1 \end{pmatrix} A = \begin{pmatrix} 0 & -1/\sqrt{2} \\ \sqrt{2} & 0 \end{pmatrix} \text{ or } \begin{pmatrix} 0 & -1/\sqrt{2} \\ \sqrt{2} & 0 \end{pmatrix} .
\]
We show that the second case is not possible. By [LLT1],
\[
\sigma = \begin{pmatrix} 2\lambda + 1 & -\lambda \\ 2\lambda & -1 \end{pmatrix} \in G_0(2) .
\]
\[
\begin{pmatrix} 0 & -1/\sqrt{2} \\ \sqrt{2} & 0 \end{pmatrix} \sigma \begin{pmatrix} 0 & -1/\sqrt{2} \\ \sqrt{2} & 0 \end{pmatrix}^{-1} = \begin{pmatrix} * & \lambda \\ ** & 4\lambda + 1 \end{pmatrix} \notin G_0(2)
\]
\((\lambda/(4\lambda + 1)\) is not a reduced form). Hence, the second case is not possible.

It follows that
\[
AG_0(2) = \begin{pmatrix} 0 & -1/\sqrt{2} \\ \sqrt{2} & 0 \end{pmatrix} G_0(2) .
\]

(ii) Suppose \(A\) takes the form
\[
A = A_2 = \begin{pmatrix} h\sqrt{p} & 1/\sqrt{p} \\ -\sqrt{p} & 0 \end{pmatrix} .
\]
Since \(A_2\) is the inverse of \(A_1\) and \(A_1G_0(p)\) has order 2 in \(\mathcal{N}(G_0(p))/G_0(p)\),
\[
A_2G_0(p) = A_1G_0(p) = \begin{pmatrix} 0 & -1/\sqrt{p} \\ \sqrt{p} & 0 \end{pmatrix} G_0(p) .
\]

(iii) Suppose \(abcd \neq 0\). By Lemma 5, \(b/a\) is an element of \(\mathbb{Q}(\lambda)\). Furthermore, if \(x/y\) is the reduced form of \(-b/a\), then \(y\) is a multiple of \(p\) \((\tau = p)\). By Leutbecher’s Theorem ([L1], [L2]) \(-b/a = x/y\) is a cusp of \(G\). By Proposition 6(ii) of [LLT1], \(G\) contains an element of the form
\[
B = \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} .
\]
Since \(y\) is a multiple of \(p\), \(B \in G_0(p)\). A direct calculation shows that
\[
\sigma = AB = \begin{pmatrix} 0 & -u^{-1} \\ u & v \end{pmatrix} \in \mathcal{N}(G_0(p))
\]
and $\sigma = 0$. By Lemma 4,

$$AB = \left(\begin{array}{cc} 0 & -1/\sqrt{p} \\ \sqrt{p} & h \sqrt{p} \end{array} \right).$$

As above, one has

$$AG_0(p) = ABG_0(p) = \left(\begin{array}{cc} 0 & -1/\sqrt{p} \\ \sqrt{p} & 0 \end{array} \right) G_0(p).$$

Summing up the above, we have

$$AG_0(p) = \left(\begin{array}{cc} 0 & -1/\sqrt{p} \\ \sqrt{p} & 0 \end{array} \right) G_0(p),$$

for all $A \in N(G_0(p)) \setminus G_0(p)$. This implies that $N(G_0(p))/G_0(p)$ is a subgroup of \mathbb{Z}_2.

\textbf{Lemma 9.} $r/s \in \mathbb{Q}[\lambda] \times$ such that $(r, s) = 1$ is equivalent to ∞ in $G_0(p)$ if and only if s is a multiple of p in $\mathbb{Z}[\lambda]$.

\textbf{Proof.} It is clear that if r/s is equivalent to ∞ in $G_0(p)$, then s is a multiple of p. Conversely, for any $c = x/py \in \mathbb{Q}[\lambda]$ such that $x \neq 0$ and $(x, p) = 1$, let x'/y' be the reduced form of c. By Leutbecher’s Theorem ([L1], [L2]) and Proposition 6(ii) of [LLT1], G contains an element of the form

$$A = \left(\begin{array}{cc} x' & z \\ y' & w \end{array} \right).$$

Since $(x, p) = 1$, y' is a multiple of p. This implies that $A \in G_0(p)$. Consequently, c is a cusp of $G_0(p)$ equivalent to ∞. \hfill \Box

\textbf{Theorem 10.} Let p be a prime in $\mathbb{Z}[\lambda]$ such that $G_0(p)$ has $p + 1$ inequivalent cusps. Then $N(G_0(p)) = G_0(p)$.

\textbf{Proof.} Suppose not. By Lemma 8, $N(G_0(p))/G_0(p) \cong \mathbb{Z}_2$ and

$$N(G_0(p)) = \left(\begin{array}{cc} 0 & -1/\sqrt{p} \\ \sqrt{p} & 0 \end{array} \right) G_0(p) \cup G_0(p).$$

This implies that $N(G_0(G_0(p)))$ has at least 2 cusps.

Let d be a cusp of $G_0(p)$ such that d is not equivalent to ∞ in $N(G_0(p))$. $d \neq 0$ since 0 is equivalent to ∞ in $N(G_0(p))$ by

$$\left(\begin{array}{cc} 0 & -1/\sqrt{p} \\ \sqrt{p} & 0 \end{array} \right).$$

Write $d = r/s \in \mathbb{Q}[\lambda] \times$ ($(r, s) = 1$). Since d is not equivalent to ∞ in $G_0(p)$, s is not a multiple of p (Lemma 9). However,

$$\left(\begin{array}{cc} 0 & -1/\sqrt{p} \\ \sqrt{p} & 0 \end{array} \right) \frac{r}{s} = -\frac{s}{pw}$$

and $(s, p) = 1$; hence d is equivalent to ∞ in $N(G_0(p))$, a contradiction. This completes the proof of Theorem 10 and hence the main theorem. \hfill \Box
REFERENCES

[R] D. Rosen, The substitutions of the Hecke group $\Gamma(2\cos\pi/5)$, Arch. Math., 46 (1986), 533 – 538. MR 87k:11048

Department of Mathematics, National University of Singapore, Singapore 119260, Republic of Singapore

E-mail address: matlml@math.nus.edu.sg