Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Calculating and interpreting the Mislin genus
of a special class of nilpotent spaces


Authors: Peter Hilton and Dirk Scevenels
Journal: Proc. Amer. Math. Soc. 127 (1999), 3433-3438
MSC (1991): Primary 55P60; Secondary 20F18
Published electronically: June 17, 1999
MathSciNet review: 1644018
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that there is a bijection between the Mislin genus of a circle bundle over a certain nilpotent base space $M$, which is constructed from a nilpotent group $N$ of a certain specified type, and the Mislin genus of $N$ itself.


References [Enhancements On Off] (What's this?)

  • 1. Carles Casacuberta and Peter Hilton, Calculating the Mislin genus for a certain family of nilpotent groups, Comm. Algebra 19 (1991), no. 7, 2051–2069. MR 1121120, 10.1080/00927879108824244
  • 2. Peter Hilton, On the genus of nilpotent groups and spaces, Israel J. Math. 54 (1986), no. 1, 1–13. MR 852464, 10.1007/BF02764871
  • 3. Peter Hilton and Guido Mislin, On the genus of a nilpotent group with finite commutator subgroup, Math. Z. 146 (1976), no. 3, 201–211. MR 0396755
  • 4. Peter Hilton, Guido Mislin, and Joe Roitberg, Localization of nilpotent groups and spaces, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975. North-Holland Mathematics Studies, No. 15; Notas de Matemática, No. 55. [Notes on Mathematics, No. 55]. MR 0478146
  • 5. Peter Hilton and Dirk Scevenels, Calculating the genus of a direct product of certain nilpotent groups, Publ. Mat. 39 (1995), no. 2, 241–261. MR 1370884, 10.5565/PUBLMAT_39295_03
  • 6. P. Hilton and Ch. Schuck, On the structure of nilpotent groups of a certain type, Topol. Methods Nonlinear Anal. 1 (1993), no. 2, 323–327. MR 1233100
  • 7. Peter Hilton and Christopher Schuck, Calculating the genus of certain nilpotent groups, Bol. Soc. Mat. Mexicana (2) 37 (1992), no. 1-2, 263–269. Papers in honor of José Adem (Spanish). MR 1317577
  • 8. C. A. McGibbon, On the localization genus of a space, Algebraic topology: new trends in localization and periodicity (Sant Feliu de Guíxols, 1994) Progr. Math., vol. 136, Birkhäuser, Basel, 1996, pp. 285–306. MR 1397739
  • 9. Guido Mislin, Nilpotent groups with finite commutator subgroups, Localization in group theory and homotopy theory, and related topics (Sympos., Battelle Seattle Res. Center, Seattle, Wash., 1974) Springer, Berlin, 1974, pp. 103–120. Lecture Notes in Math., Vol. 418. MR 0357612
  • 10. A. Zabrodsky, On the genus of finite CW-𝐻-spaces, Comment. Math. Helv. 49 (1974), 48–64. MR 0353308
  • 11. Alexander Zabrodsky, 𝑝 equivalences and homotopy type, Localization in group theory and homotopy theory, and related topics (Sympos., Battelle Seattle Res. Center, Seattle, Wash., 1974) Springer, Berlin, 1974, pp. 161–171. Lecture Notes in Math., Vol. 418. MR 0377867

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 55P60, 20F18

Retrieve articles in all journals with MSC (1991): 55P60, 20F18


Additional Information

Peter Hilton
Affiliation: Department of Mathematical Sciences, State University of New York, Binghamton, New York 13902–6000

Dirk Scevenels
Affiliation: Department of Mathematics, University of Central Florida, Orlando, Florida 32816–1364; Departement Wiskunde, Katholieke Universiteit Leuven, Celestijnenlaan 200 B, B-3001 Heverlee, Belgium
Email: dirk.scevenels@wis.kuleuven.ac.be

DOI: https://doi.org/10.1090/S0002-9939-99-05202-8
Received by editor(s): February 9, 1998
Published electronically: June 17, 1999
Communicated by: Ralph Cohen
Article copyright: © Copyright 1999 American Mathematical Society