Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Calculating and interpreting the Mislin genus
of a special class of nilpotent spaces


Authors: Peter Hilton and Dirk Scevenels
Journal: Proc. Amer. Math. Soc. 127 (1999), 3433-3438
MSC (1991): Primary 55P60; Secondary 20F18
DOI: https://doi.org/10.1090/S0002-9939-99-05202-8
Published electronically: June 17, 1999
MathSciNet review: 1644018
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that there is a bijection between the Mislin genus of a circle bundle over a certain nilpotent base space $M$, which is constructed from a nilpotent group $N$ of a certain specified type, and the Mislin genus of $N$ itself.


References [Enhancements On Off] (What's this?)

  • 1. C. Casacuberta and P. Hilton, Calculating the Mislin genus for a certain family of nilpotent groups, Comm. Algebra 19 (1991), 2051-2069. MR 92j:20032
  • 2. P. Hilton, On the genus of nilpotent groups and spaces, Israel J. Math. 54 (1986), 1-13.
    MR 87m:55011
  • 3. P. Hilton and G. Mislin, On the genus of a nilpotent group with finite commutator subgroup, Math. Z. 146 (1976), 201-211. MR 53:615
  • 4. P. Hilton, G. Mislin and J. Roitberg, Localization of nilpotent groups and spaces, North-Holland Math. Studies vol. 15, North-Holland, Amsterdam (1975). MR 57:17635
  • 5. P. Hilton and D. Scevenels, Calculating the genus of the direct product of certain nilpotent groups, Publ. Mat. 39 (1995), 241-261. MR 97b:20049
  • 6. P. Hilton and C. Schuck, On the structure of nilpotent groups of a certain type, Topol. Methods Nonlinear Anal. 1 (1993), 323-327. MR 94i:20061
  • 7. -, Calculating the genus of certain nilpotent groups, Bull. Mex. Math. Soc. 37 (1992), 263-269. MR 95m:20037
  • 8. C. A. McGibbon, On the localization genus of a space, in: Algebraic Topology: New Trends in Localization and Periodicity, Progress in Math. vol. 136, Birkhäuser Verlag, Basel (1996), 285-306. MR 97d:55019
  • 9. G. Mislin, Nilpotent groups with finite commutator subgroups, Lecture Notes in Math. vol. 418, Springer-Verlag, Berlin Heidelberg New York (1974), 103-120. MR 50:10080
  • 10. A. Zabrodsky, On the genus of finite CW H-spaces, Comment. Math. Helv. 49 (1974), 48-64. MR 50:5792
  • 11. -, $p$-equivalences and homotopy type, Lecture Notes in Math. vol. 418, Springer-Verlag, Berlin Heidelberg New York (1974), 160-171. MR 51:14036

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 55P60, 20F18

Retrieve articles in all journals with MSC (1991): 55P60, 20F18


Additional Information

Peter Hilton
Affiliation: Department of Mathematical Sciences, State University of New York, Binghamton, New York 13902–6000

Dirk Scevenels
Affiliation: Department of Mathematics, University of Central Florida, Orlando, Florida 32816–1364; Departement Wiskunde, Katholieke Universiteit Leuven, Celestijnenlaan 200 B, B-3001 Heverlee, Belgium
Email: dirk.scevenels@wis.kuleuven.ac.be

DOI: https://doi.org/10.1090/S0002-9939-99-05202-8
Received by editor(s): February 9, 1998
Published electronically: June 17, 1999
Communicated by: Ralph Cohen
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society