Editorial Information

To be published in the Proceedings, a paper must be correct, new, nontrivial, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Proceedings Editors solicit and encourage publication of worthy papers of length not exceeding 10 published pages. Published pages are the same size as those generated in the style files provided for $\text{AMS-LATEX}$ or $\text{AMS-TEX}$.

Very short notes not to exceed two printed pages are also accepted, and appear under the heading Shorter Notes. Items deemed suitable include an elegant new proof of an important and well-known theorem, an illuminating example or counterexample, or a new viewpoint on familiar results. New results, if of a brief and striking character, might also be acceptable, though in general a paper which is merely very short will not be suitable for the Shorter Notes department.

As of May 31, 1999, the backlog for this journal was approximately 11 issues. This estimate is the result of dividing the number of manuscripts for this journal in the Providence office that have not yet gone to the printer on the above date by the average number of articles per issue over the previous twelve months, reduced by the number of issues published in four months (the time necessary for editing and composing a typical issue). In an effort to make articles available as quickly as possible, articles are posted to e-MATH individually before they appear in an issue.

A Consent to Publish and Copyright Agreement is required before a paper will be published in this journal. After a paper is accepted for publication, the Providence office will send out a Consent to Publish and Copyright Agreement to all authors of the paper. By submitting a paper to this journal, authors certify that the results have not been submitted to nor are they under consideration for publication by another journal, conference proceedings, or similar publication.

Information for Authors

Initial submission. Two copies of the paper should be sent directly to the appropriate Editor and the author should keep a copy. IF an editor is agreeable, an electronic manuscript prepared in $\text{TEX}$ or $\text{LATEX}$ may be submitted by pointing to an appropriate URL on a preprint or e-print server.

The first page of an article must consist of a descriptive title, followed by an abstract that summarizes the article in language suitable for workers in the general field (algebra, analysis, etc.). The descriptive title should be short, but informative; useless or vague phrases such as “some remarks about” or “concerning” should be avoided. The abstract should be at least one complete sentence, and at most 150 words. Included with the footnotes to the paper should be the 2000 Mathematics Subject Classification representing the primary and secondary subjects of the article. The classifications are accessible from http://www.ams.org/msc. The list of classifications will also be available in print starting with the 1999 annual index of Mathematical Reviews. The Mathematics Subject Classification footnote may be followed by a list of key words and phrases describing the subject matter of the article and taken from it. Journal abbreviations used in bibliographies are listed in the latest Mathematical Reviews annual index. The series abbreviations are also accessible from http://www.ams.org/publications. When the manuscript is submitted, authors should supply the editor with electronic addresses if available. These will be printed after the postal address at the end of each article.

Electronically prepared manuscripts. The AMS encourages electronically prepared manuscripts, with a strong preference for $\text{AMS-LATEX}$. To this end, the Society has prepared $\text{AMS-LATEX}$ author packages for each AMS publication. Author packages include instructions for preparing electronic manuscripts, the AMS Author Handbook, samples, and a style file that generates the particular design specifications of that publication series. Articles properly prepared using the $\text{AMS-LATEX}$ style file automatically provide
hypertext linking to the bibliography and other elements of the article for searching electronically on the World Wide Web. Because linking must often be added manually to electronically prepared manuscripts in other forms of TeX, using \texttt{AMSTeX} also reduces the amount of technical intervention once the files are received by the AMS. This results in fewer errors in processing and saves the author proofreading time. AMSTeX papers also move more efficiently through the production stream, helping to minimize publishing costs.

\texttt{AMSTeX} is the highly preferred format of TeX, but author packages are also available in \texttt{AMSTeX}. Those authors who make use of these style files from the beginning of the writing process will further reduce their own efforts. Manuscripts prepared electronically in \texttt{AMSTeX} or plain TeX are normally not acceptable due to the high amount of technical time required to insure that the file will run properly through the AMS in-house production system. \texttt{AMSTeX} users will find that \texttt{AMSTeX} is the same as \texttt{AMSTeX} with additional commands to simplify the typesetting of mathematics, and users of plain TeX should have the foundation for learning \texttt{AMSTeX}.

Authors may retrieve an author package from e-MATH via the World Wide Web through the URL \url{http://www.ams.org/tex/} or via FTP to \url{ftp.ams.org} (login as \texttt{anonymous} and enter username as password). The author package can also be obtained free of charge by sending e-mail to \url{pub@ams.org} (Internet) or from the Publication Division, American Mathematical Society, P.O. Box 6248, Providence, RI 02940-6248. When requesting an author package, please specify \texttt{AMSTeX} or \texttt{AMSTeX}, Macintosh or IBM (3.5) format, and the publication in which your paper will appear. Please be sure to include your complete mailing address.

At the time of submission, authors should indicate if the paper has been prepared using \texttt{AMSTeX} or \texttt{AMSTeX} and provide the Editor with a paper manuscript that matches the electronic manuscript. The final version of the electronic manuscript should be sent to the Providence office immediately after the paper has been accepted for publication. The author should also send the final version of the paper manuscript to the Editor, who will forward a copy to the Providence office. Editors will require authors to send their electronically prepared manuscripts to the Providence office in a timely fashion. Electronically prepared manuscripts can be sent via e-mail to \url{pub-submit@ams.org} (Internet) or on diskette to the Electronic Prepress Department, American Mathematical Society, P.O. Box 6248, Providence, RI 02940-6248. When sending a manuscript electronically, please be sure to include a message indicating in which publication the paper has been accepted. No corrections will be accepted electronically. Authors must mark their changes on their proof copies and return them to the Providence office. Complete instructions on how to send files are included in the author package.

Electronic graphics. Figures may be sent to the AMS in an electronic format. The AMS recommends that graphics created electronically be saved in Encapsulated PostScript (EPS) format. This includes graphics originated via a graphics application as well as scanned photographs or other computer-generated images.

If the graphics package used does not support EPS output, the graphics file should be saved in one of the standard graphics formats—such as TIFF, PICT, GIF, etc.—rather than in an application-dependent format. Graphics files sent in an application-dependent format are not likely to be used. No matter what method was used to produce the graphic, it is necessary to provide a paper copy to the AMS.

Authors using graphics packages for the creation of electronic art should also avoid the use of any lines thinner than 0.5 points in width. Many graphics packages allow the user to specify a “hairline” for a very thin line. Hairlines often look acceptable when proofed on a typical laser printer. However, when produced on a high-resolution laser imagesetter, hairlines become nearly invisible and will be lost entirely in the final printing process. Screens should be set to values between 15% and 85%. Screens which fall outside of this range are too light or too dark to print correctly.
**\LaTeX** files available.** Beginning with the January 1992 issue of the *Bulletin* and the January 1996 issues of *Transactions, Proceedings, Mathematics of Computation*, and the *Journal of the AMS*, \LaTeX\ files can be downloaded from e-MATH, starting from URL http://www.ams.org/journals/. Authors without Web access may request their files at the address given below after the article has been published. For *Bulletin* papers published in 1987 through 1991 and for *Transactions, Proceedings, Mathematics of Computation*, and the *Journal of the AMS* papers published in 1987 through 1995, \LaTeX\ files are available upon request for authors without Web access by sending e-mail to file-request@ams.org or by contacting the Electronic Prepress Department, American Mathematical Society, P.O. Box 6248, Providence, RI 02940-6248. The request should include the title of the paper, the name(s) of the author(s), the name of the publication in which the paper has or will appear, and the volume and issue numbers if known. The \LaTeX\ file will be sent to the author making the request after the article goes to the printer. If the requestor can receive Internet e-mail, please include the e-mail address to which the file should be sent. Otherwise please indicate a diskette format and postal address to which a disk should be mailed. **Note:** Because \LaTeX\ production at the AMS sometimes requires extra fonts and macros that are not yet publicly available, \LaTeX\ files cannot be guaranteed to run through the author's version of \LaTeX\ without errors. The AMS regrets that it cannot provide support to eliminate such errors in the author’s \LaTeX\ environment.

Any inquiries concerning a paper that has been accepted for publication should be sent directly to the Electronic Prepress Department, American Mathematical Society, P.O. Box 6248, Providence, RI 02940-6248.
Editors

Authors are requested to send papers directly to the appropriate Editor (the one whose area of responsibility and expertise, as described below, most closely approximates the subject field of the manuscript). Only when in doubt about an appropriate Editor, should manuscripts be sent to the Coordinating Editor responsible for the area in mathematics most closely connected to the paper. If in doubt about the area, send the manuscript to the Managing Editor, to whom all other communication about the journal should also be addressed. (All addresses should include the line “Department of Mathematics”, unless another department is indicated.)

Managing Editor: Clifford J. Earle, Jr., Cornell University, White Hall, Ithaca, NY 14853-7901; e-mail: cliff@math.cornell.edu

1. ODE, PDE, GLOBAL ANALYSIS, AND DYNAMICAL SYSTEMS
   Coordinating Editor: Linda Keen, CUNY-Lehman College, Bronx, NY 10468; e-mail: linda@alpha.lehman.cuny.edu
   Partial differential equations, David S. Tartakoff, University of Illinois at Chicago, Chicago, IL 60607; e-mail: dst@uic.edu
   Dynamical systems and ergodic theory, Michael Handel, Department of Mathematics and Computer Science, Herbert Lehman College (CUNY), Bronx, NY 10468-1589; e-mail: michael@alpha.lehman.cuny.edu
   Ordinary differential equations and special functions, Hal L. Smith, Arizona State University, Tempe, AZ 85287; e-mail: halsmith@math.la.asu.edu
   Global analysis, Jozef Dodziuk, Ph.D. Program in Mathematics, Graduate School and University Center (CUNY), 33 West 42nd Street, New York, NY 10036-8099; e-mail: jozek@hodge.gc.cuny.edu

2. LIE GROUPS, TOPOLOGY, AND GEOMETRY
   Coordinating Editor: Ronald A. Fintushel, Michigan State University, East Lansing, MI 48824-1027; e-mail: ronfint@math.msu.edu
   Topological groups and Lie groups (symmetric spaces), Rebecca Herb, University of Maryland, College Park, MD 20742; e-mail: rah@math.umd.edu
   Riemannian geometry (including affine, pseudo-Riemannian, contact, classical, and Lorentzian geometries), Christopher Croke, University of Pennsylvania, Philadelphia, PA 19104-6317; e-mail: ccroke@math.upenn.edu
   Geometric analysis (geometric PDE, minimal surfaces and harmonic maps), Bennett Chow, School of Mathematics, University of Minnesota, Minneapolis, MN 55455; e-mail: bchow@math.umn.edu
   Algebraic topology, Ralph Cohen, Stanford University, Stanford, CA 94305-2125; e-mail: ralph@math.stanford.edu
   Set-theoretic and general topology, Alan Dow, York University, North York, Ontario, Canada M3J 1P3; e-mail: dowa@mathstat.yorku.ca
   Low dimensional topology, gauge theory, 4-manifolds, Ronald A. Fintushel
   Complex and Kähler geometry, Leslie Saper, Duke University, Durham, NC 27708-0320; e-mail: saper@math.duke.edu

3. ANALYSIS AND OPERATOR THEORY
   Coordinating Editor: Eric Bedford, Indiana University, Bloomington, IN 47405-5701; e-mail: BEDFORD@ucs.indiana.edu
   One complex variable and potential theory, Albert Baernstein II, Washington University, St. Louis, MO 63130-4899; e-mail: al@math.wustl.edu
   Several complex variables, Steven R. Bell, Purdue University, West Lafayette, IN 47907-1395; e-mail: bell@math.purdue.edu
   Linear and nonlinear functional analysis, Jonathan M. Borwein, Department of Mathematics and Statistics, Simon Fraser University, Burnaby, BC, Canada V5A 1S6; e-mail: jborwein@cecm.sfu.ca
Banach spaces and linear functional analysis, Dale Alspach, Oklahoma State University, Stillwater, OK 74078-0613; e-mail: alspach@hilbert.math.okstate.edu

Operator Theory, Joseph A. Ball, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061; e-mail: ball@math.vt.edu

Operator algebras and wavelets, David R. Larson, Texas A&M University, College Station, TX 77843-3368; e-mail: larson@math.tamu.edu

Geometric measure theory and classical real analysis, David Preiss, University College London, Gower Street, London WC1E 6BT, UK; e-mail: d.preiss@ucl.ac.uk

Harmonic analysis, Christopher D. Sogge, Johns Hopkins University, Baltimore, MD 21218; e-mail: sogge@math.jhu.edu

Analytic number theory and automorphic forms, Dennis A. Hejhal, School of Mathematics, University of Minnesota, Minneapolis, MN 55455-0488; e-mail: hejhal@math.umn.edu

4. ALGEBRA, NUMBER THEORY, AND COMBINATORICS

Coordinating Editor: Lance W. Small, University of California San Diego, La Jolla, CA 92093-0112; e-mail: lwsmall@ucsd.edu

General number theory, David E. Rohrlich, Boston University, Boston, MA 02215-2411; e-mail: rohrlich@math.bu.edu

General algebra, Lance W. Small

Commutative algebra, Wolmer V. Vasconcelos, Rutgers University, New Brunswick, NJ 08903-2101; e-mail: vasconce@math.rutgers.edu

Group theory, Stephen D. Smith, University of Illinois at Chicago, Chicago, IL 60607; e-mail: smiths@math.uic.edu

Algebraic geometry, Michael Stillman, Cornell University, White Hall, Ithaca, NY 14853-7901; e-mail: mikes@math.cornell.edu

Combinatorics, John R. Stembridge, University of Michigan, Ann Arbor, MI 48109-1109; e-mail: jrs@math.lsa.umich.edu

Analytic number theory and automorphic forms, Dennis A. Hejhal, School of Mathematics, University of Minnesota, Minneapolis, MN 55455-0488; e-mail: hejhal@math.umn.edu

Logic and foundations, Carl G. Jockusch, Jr., University of Illinois, 1409 W. Green St., Urbana, IL 61801-2917; e-mail: jockusch@math.uiuc.edu

Lie algebras, Dan M. Barbasch, Cornell University, Ithaca, NY 14853; e-mail: barbasch@math.cornell.edu

Noncommutative rings, Ken Goodearl, University of California, Santa Barbara, CA 93106; e-mail: goodearl@math.ucsb.edu

5. APPLIED MATHEMATICS, PROBABILITY, AND STATISTICS

Coordinating Editor: Mark J. Ablowitz, Department of Applied Mathematics, Campus Box 526, University of Colorado, Boulder, CO 80309-0526; e-mail: markjab@newton.colorado.edu

Probability, Claudia M. Neuhauser, School of Mathematics, University of Minnesota, Minneapolis, MN 55455; e-mail: nhauser@math.umn.edu

Statistics, Wei Y. Loh, Department of Statistics, University of Wisconsin, Madison, WI 53706-1693; e-mail: loh@stat.wisc.edu

Applied mathematics, David Sharp, Theoretic Division, Los Alamos National Laboratory MSB285, Los Alamos, NM 87545; e-mail: dhs@lanl.gov

Control theory, John A. Burns, Interdisciplinary Center for Applied Mathematics, Virginia Polytech Institute, Blacksburg, VA 24061-0531; e-mail: burnsreg@vtvm1.cc.vt.edu

Hyperbolic partial differential equations, Sunica Canic, University of Houston, Houston, TX 77204-3476; e-mail: canic@math.uh.edu
(Continued from back cover)

E. Arthur Robinson, Jr. and Ayşe A. Şahin, On the absence of invariant measures with locally maximal entropy for a class of $\mathbb{Z}^d$ shifts of finite type 3309

Ross G. Pinsky, Finite time blow-up for the inhomogeneous equation $u_t = \Delta u + a(x)u^p + \lambda \phi$ in $\mathbb{R}^d$ ................................................. 3319

F. STATISTICS AND PROBABILITY

Ewa Marciniak and Jacek Wesolowski, Asymptotic Eulerian expansions for binomial and negative binomial reciprocals ........................................ 3329

K. Farahmand, On random algebraic polynomials .............................. 3339

G. TOPOLOGY

Philippe Rukimbira, On K-contact manifolds with minimal number of closed characteristics ............................................................... 3345

Antonios D. Melas, A Liouville type theorem for the Schrödinger operator .... 3353

Michael Field, Generating sets for compact semisimple Lie groups ........... 3361

Jen-Tseh Chang, Large components of principal series and characteristic cycles 3367

G. J. Kennedy and S. D. McCartan, Singular sets and maximal topologies .. 3375

Dario Bambusi, On the Darboux theorem for weak symplectic manifolds ...... 3383

C. A. Morales, M. J. Pacifico, and E. R. Pujals, Singular hyperbolic systems 3393

Sang Youl Lee, Matrix presentations of braids and applications ............... 3403

Selman Akbulut, Decomposing a 4-manifold .................................... 3413

Seiichi Kamada, Vanishing of a certain kind of Vassiliev invariants of 2-knots 3421

Toshifumi Tanaka, Maximal Bennequin numbers and Kauffman polynomials of positive links ......................................................... 3427

Peter Hilton and Dirk Scevenels, Calculating and interpreting the Mislin genus of a special class of nilpotent spaces ................................. 3433
A. ALGEBRA, NUMBER THEORY, AND COMBINATORICS

Khac Viet Nguyen, Non-semistable Arakelov bound and hyperelliptic Szpiro ratio for function fields .................................................. 3125
Mong-Lung Lang and Ser-Peow Tan, Normalizers of the congruence subgroups of the Hecke group $G_5$ ............................................. 3131
Robert Gilmer, William Heinzer, and Moshe Roitman, Finite generation of powers of ideals ...................................................... 3141
Gregory T. Lee, Group rings whose symmetric elements are Lie nilpotent .... 3153
Ellen Kirkman, Ian M. Musson, and D. S. Passman, Noetherian down-up algebras ................................................................. 3161
Dragomir Ž. Đoković and Lowell G. Sweet, Infinite homogeneous algebras are anticommutative ...................................................... 3169

B. ANALYSIS

Jiri Dadok and Reese Harvey, The Pontryagin 4-form ................................ 3175
Tu Caifeng and Jiang JiFa, The necessary and sufficient conditions for the global stability of type-K Lotka–Volterra system .................. 3181
Abdelaziz Maouche, Spectrum preserving linear mappings for scattered Jordan-Banach algebras .................................................... 3187
Bernard Coupet, Hervé Gaussier, and Alexandre Sukhov, Regularity of CR maps between convex hypersurfaces of finite type ........... 3191
Vivek Sahai, On models of $U_q(sl(2))$ and $q$–Appell functions using a $q$–integral transformation .............................................. 3201
Ian Graham, Growth and covering theorems associated with the Roper-Suffridge extension operator ................................................. 3215
A. Ülger, Arens regularity of weakly sequentially complete Banach algebras .... 3221
V. Aversa and D. Preiss, Lusin's theorem for derivatives with respect to a continuous function ...................................................... 3229
Yong Zhang, Nilpotent ideals in a class of Banach algebras ...................... 3237
Zhijian Wu, Strong type estimate and Carleson measures for Lipschitz spaces .......................................................... 3243
P. J. Rippon and G. M. Stallard, Iteration of a class of hyperbolic meromorphic functions ......................................................... 3251
Miroslav Englis, A mean value theorem on bounded symmetric domains ...... 3259
Peter A. Linnell, Von Neumann algebras and linear independence of translates ................................................................................. 3269
Luis Bernal-González, Densely hereditarily hypercyclic sequences and large hypercyclic manifolds ................................................. 3279
Richard Fournier and Stephan Ruscheweyh, Free boundary value problems for analytic functions in the closed unit disk .................... 3287
Maxim R. Burke and Krzysztof Ciesielski, Sets of range uniqueness for classes of continuous functions ......................................... 3295

(Continued on inside back cover)