Consonance and topological completeness

in analytic spaces

Author:
Ahmed Bouziad

Journal:
Proc. Amer. Math. Soc. **127** (1999), 3733-3737

MSC (1991):
Primary 54A35; Secondary 54B20, 54C60

DOI:
https://doi.org/10.1090/S0002-9939-99-04902-3

Published electronically:
May 10, 1999

MathSciNet review:
1610916

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give a set-valued criterion for a topological space to be consonant, i.e. the upper Kuratowski topology on the family of all closed subsets of coincides with the co-compact topology. This characterization of consonance is then used to show that the statement *``every analytic metrizable consonant space is complete''* is independent of the usual axioms of set theory. This answers a question by Nogura and Shakhmatov. It is also proved that continuous open surjections defined on a consonant space are compact covering.

**[1]**Bouziad A.,*Borel measures in consonant spaces*, Top. Appl.**70**(1996), 125-132. MR**97c:54010****[2]**Dolecki S., G.H. Greco and A. Lechicki,*Sur la topologie de la convergence supérieure de Kuratowski*, C. R. Acad. Sci. Paris**312**(1991), 923-926. MR**92c:54007****[3]**Dolecki S., G.H. Greco and A. Lechicki,*When do the upper Kuratowski topology (homeomorphically, Scott topology) and the co-compact topology coincide?*, Trans. Amer. Math. Soc.**8**(1995), 2869-2884. MR**96c:54010****[4]**Kanove[??]i V.G. and A.V. Ostrovski[??]i,*On non-Borel -sets*, Soviet Math. Dokl.**24**(1981), 386-389.**[5]**Martin D.A. and R.M. Solovay,*Internal Cohen extensions*, Ann. Math. Logic**2**(1970), 143-178. MR**42:5787****[6]**Michael E.,*A theorem on semi-continuous set-valued functions*, Duke Math. Jour.**26**(1959), 647-651. MR**22:229****[7]**van Mill J., J. Pelant and R. Pol,*Selections that characterize topological completeness*, Fund. Math., vol. 149, 1996, pp. 127-141. MR**97b:54027****[8]**Nogura T. and D. Shakhmatov,*When does the Fell topology on a hyperspace of closed sets coincide with the meet of the upper Kuratowski and the lower Vietoris topologies?*, Top. Appl.**70**(1996), 213-243. MR**97f:54011****[9]**Pasynkov B.A.,*On open mappings*, Dokl. Akad. Nauk SSSR 175 (1967), 292-295 (in Russian); English transl.: Soviet Math. Dokl.**8**(1967), 853-856. MR**36:862****[10]**Rudin M.E.,*Martin's Axiom*, in: J. Barwise, ed., Handbook of Mathematical Logic, North-Holland Publishing, 1977, pp. 491-501. MR**56:15351****[11]**Saint Raymond J.,*Caractérisation d'espaces Polonais*, Sém. Choquet (Initiation Anal.)**5**(1971-1973), 10 p.. MR**57:12811**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
54A35,
54B20,
54C60

Retrieve articles in all journals with MSC (1991): 54A35, 54B20, 54C60

Additional Information

**Ahmed Bouziad**

Affiliation:
Département de Mathématiques, Université de Rouen, CNRS UPRES-A 6085, 76821 Mont Saint-Aignan, France

Email:
Ahmed.Bouziad@univ-rouen.fr

DOI:
https://doi.org/10.1090/S0002-9939-99-04902-3

Keywords:
Upper Kuratowski convergence,
co-compact topology,
analytic spaces,
consonant spaces

Received by editor(s):
October 7, 1996

Received by editor(s) in revised form:
February 10, 1998

Published electronically:
May 10, 1999

Communicated by:
Alan Dow

Article copyright:
© Copyright 1999
American Mathematical Society