Lacunary sets based on Lorentz spaces

Author:
Raymond J. Grinnell

Journal:
Proc. Amer. Math. Soc. **127** (1999), 3547-3556

MSC (1991):
Primary 43A46; Secondary 43A15, 43A25

Published electronically:
May 13, 1999

MathSciNet review:
1610901

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A new lacunary set for compact abelian groups is introduced; this is called a set. This set is defined in terms of the Lorentz spaces and is shown to be a generalization of sets and Sidon sets. A number of functional-analytic statements about sets are established by making use of the structural similarities between spaces and Lorentz spaces. These statements are analogous to several well-known properties of a set which are equivalent to the definition of a set. Some general set-theoretic and arithmetic properties of sets are also developed; these properties extend known results on the structure of sets. Open problems and directions for further research are outlined.

**[1]**Gregory F. Bachelis and Samuel E. Ebenstein,*On Λ(𝑝) sets*, Pacific J. Math.**54**(1974), no. 1, 35–38. MR**0383005****[2]**Colin Bennett and Robert Sharpley,*Interpolation of operators*, Pure and Applied Mathematics, vol. 129, Academic Press, Inc., Boston, MA, 1988. MR**928802****[3]**J. Bourgain,*Bounded orthogonal systems and the Λ(𝑝)-set problem*, Acta Math.**162**(1989), no. 3-4, 227–245. MR**989397**, 10.1007/BF02392838**[4]**R. E. Edwards,*Fourier series. Vol. 2*, 2nd ed., Graduate Texts in Mathematics, vol. 85, Springer-Verlag, New York-Berlin, 1982. A modern introduction. MR**667519****[5]**Grinnell, R.,*Lorentz-improving measures on compact abelian groups*, Ph.D. Dissertation, Queen's University, 1991.**[6]**Raymond J. Grinnell and Kathryn E. Hare,*Lorentz-improving measures*, Illinois J. Math.**38**(1994), no. 3, 366–389. MR**1269693****[7]**Kathryn E. Hare,*An elementary proof of a result on Λ(𝑝) sets*, Proc. Amer. Math. Soc.**104**(1988), no. 3, 829–834. MR**964865**, 10.1090/S0002-9939-1988-0964865-1**[8]**Kathryn E. Hare,*Arithmetic properties of thin sets*, Pacific J. Math.**131**(1988), no. 1, 143–155. MR**917869****[9]**Edwin Hewitt and Kenneth A. Ross,*Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representations*, Die Grundlehren der mathematischen Wissenschaften, Bd. 115, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. MR**0156915****[10]**Edwin Hewitt and Kenneth A. Ross,*Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups*, Die Grundlehren der mathematischen Wissenschaften, Band 152, Springer-Verlag, New York-Berlin, 1970. MR**0262773****[11]**Richard A. Hunt,*On 𝐿(𝑝,𝑞) spaces*, Enseignement Math. (2)**12**(1966), 249–276. MR**0223874****[12]**Jorge M. López and Kenneth A. Ross,*Sidon sets*, Marcel Dekker, Inc., New York, 1975. Lecture Notes in Pure and Applied Mathematics, Vol. 13. MR**0440298****[13]**Richard O’Neil,*Convolution operators and 𝐿(𝑝,𝑞) spaces*, Duke Math. J.**30**(1963), 129–142. MR**0146673****[14]**Walter Rudin,*Trigonometric series with gaps*, J. Math. Mech.**9**(1960), 203–227. MR**0116177****[15]**Leonard Y. H. Yap,*Some remarks on convolution operators and 𝐿(𝑝,𝑞) spaces*, Duke Math. J.**36**(1969), 647–658. MR**0249943**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
43A46,
43A15,
43A25

Retrieve articles in all journals with MSC (1991): 43A46, 43A15, 43A25

Additional Information

**Raymond J. Grinnell**

Affiliation:
Department of Computer Science, Mathematics & Physics, University of the West Indies, Cave Hill Campus, P.O. Box 64, Bridgetown, Barbados, West Indies

Email:
grinnell@uwichill.edu.bb

DOI:
http://dx.doi.org/10.1090/S0002-9939-99-04918-7

Received by editor(s):
September 5, 1996

Received by editor(s) in revised form:
February 12, 1998

Published electronically:
May 13, 1999

Communicated by:
J. Marshall Ash

Article copyright:
© Copyright 1999
American Mathematical Society