Constructive models

of uncountably categorical theories

Authors:
Bernhard Herwig, Steffen Lempp and Martin Ziegler

Journal:
Proc. Amer. Math. Soc. **127** (1999), 3711-3719

MSC (1991):
Primary 03C57, 03D45

Published electronically:
May 6, 1999

MathSciNet review:
1610909

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We construct a strongly minimal (and thus uncountably categorical) but not totally categorical theory in a finite language of binary predicates whose only constructive (or recursive) model is the prime model.

**[AZ86]**Gisela Ahlbrandt and Martin Ziegler,*Quasi-finitely axiomatizable totally categorical theories*, Ann. Pure Appl. Logic**30**(1986), no. 1, 63–82. Stability in model theory (Trento, 1984). MR**831437**, 10.1016/0168-0072(86)90037-0**[BL71]**J. T. Baldwin and A. H. Lachlan,*On strongly minimal sets*, J. Symbolic Logic**36**(1971), 79–96. MR**0286642****[EF95]**Ebbinghaus, H.-D. and Flum, J.,*Finite model theory*, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1995. CMP**97:01****[Go78]**S. S. Gončarov,*Constructive models of ℵ₁-categorical theories*, Mat. Zametki**23**(1978), no. 6, 885–888 (Russian). MR**502056****[Ha74]**Leo Harrington,*Recursively presentable prime models*, J. Symbolic Logic**39**(1974), 305–309. MR**0351804****[Hi74]**N. G. Hisamiev,*Strongly constructive models of a decidable theory*, Izv. Akad. Nauk Kazah. SSR Ser. Fiz.-Mat.**1**(1974), 83–84, 94 (Russian). MR**0354344****[Iv89]**A. A. Ivanov,*The problem of finite axiomatizability for strongly minimal theories of graphs, and groups with more than one end*, Algebra i Logika**28**(1989), no. 2, 160–173, 244 (Russian); English transl., Algebra and Logic**28**(1989), no. 2, 108–116 (1990). MR**1065646**, 10.1007/BF01979374**[Iv89b]**A. A. Ivanov,*The problem of finite axiomatizability for strongly minimal theories of graphs*, Algebra i Logika**28**(1989), no. 3, 280–297, 366 (Russian); English transl., Algebra and Logic**28**(1989), no. 3, 183–194 (1990). MR**1066316**, 10.1007/BF01978722**[KNSta]**Khoussainov, B., Nies, A., and Shore, R. A.,*Recursive models of theories with few models*(to appear).**[Kn86]**Julia F. Knight,*Degrees coded in jumps of orderings*, J. Symbolic Logic**51**(1986), no. 4, 1034–1042. MR**865929**, 10.2307/2273915**[Ku80]**K. Ž. Kudaĭbergenov,*Constructivizable models of undecidable theories*, Sibirsk. Mat. Zh.**21**(1980), no. 5, 155–158, 192 (Russian). MR**592228****[Mo65]**Michael Morley,*Categoricity in power*, Trans. Amer. Math. Soc.**114**(1965), 514–538. MR**0175782**, 10.1090/S0002-9947-1965-0175782-0**[Ro95]**Joseph J. Rotman,*An introduction to the theory of groups*, 4th ed., Graduate Texts in Mathematics, vol. 148, Springer-Verlag, New York, 1995. MR**1307623**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
03C57,
03D45

Retrieve articles in all journals with MSC (1991): 03C57, 03D45

Additional Information

**Bernhard Herwig**

Affiliation:
School of Mathematics, University of Leeds, Leeds LS2 9JT, England

Address at time of publication:
Institut für Mathematische Logik, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany

Email:
herwig@amsta.leeds.ac.uk, herwig@ruf.uni-freiburg.de

**Steffen Lempp**

Affiliation:
Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706-1388

Email:
lempp@math.wisc.edu

**Martin Ziegler**

Affiliation:
Institut für Mathematische Logik, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany

Email:
ziegler@uni-freiburg.de

DOI:
https://doi.org/10.1090/S0002-9939-99-04920-5

Keywords:
Constructive/recursive/computable model,
uncountably categorical first-order theory,
strongly minimal set,
unsolvable word problem,
Cayley graph

Received by editor(s):
October 20, 1997

Received by editor(s) in revised form:
February 20, 1998

Published electronically:
May 6, 1999

Additional Notes:
The first author was supported by a grant of the British Engineering and Physical Sciences Research Council (Research Grant no. GR/K60503)

The second author’s research was partially supported by NSF grant DMS-9504474 and a grant of the British Engineering and Physical Sciences Research Council (Research Grant no. GR/K60497).

Communicated by:
Carl G. Jockusch, Jr.

Article copyright:
© Copyright 1999
American Mathematical Society