ON TIGHTNESS AND DEPTH
IN SUPERATOMIC BOOLEAN ALGEBRAS

SAHARON SHELAH AND OTMAR SPINAS

(Communicated by Carl G. Jockusch, Jr.)

Abstract. We introduce a large cardinal property which is consistent with L and show that for every superatomic Boolean algebra B and every cardinal λ with the large cardinal property, if tightness$^+(B) \geq \lambda^+$, then depth$^+(B) \geq \lambda$. This improves a theorem of Dow and Monk.

In [DM, Theorem C], Dow and Monk have shown that if λ is a Ramsey cardinal (see [J, p.328]), then every superatomic Boolean algebra with tightness at least λ^+ has depth at least λ. Recall that a Boolean algebra B is superatomic iff every homomorphic image of B is atomic. The depth of B is the supremum of all cardinals λ such that there is a sequence $(b_\alpha : \alpha < \lambda)$ in B with $b_\beta < b_\alpha$ for all $\alpha < \beta < \lambda$ (a well-ordered chain of length λ). Then depth$^+$ of B is the first cardinal λ such that there is no well-ordered chain of length λ in B. The tightness of B is the supremum of all cardinals λ such that B has a free sequence of length λ, where a sequence $(b_\alpha : \alpha < \lambda)$ is called free provided that if Γ and Δ are finite subsets of λ such that $\alpha < \beta$ for all $\alpha \in \Gamma$ and $\beta \in \Delta$, then

$$\bigcap_{\alpha \in \Gamma} -b_\alpha \cap \bigcap_{\beta \in \Delta} b_\beta \neq 0$$

By tightness$^+(B)$ we denote the first cardinal λ for which there is no free sequence of length λ in B.

For $b \in B$ we sometimes write b^0 for $-b$ and b^1 for b.

We improve Theorem C from [DM] in two directions. We introduce a large cardinal property which is much weaker than Ramseyness and even consistent with L (the constructible universe) and show that in Theorem C from [DM] it suffices to assume that λ has this property. Moreover we show that it suffices to assume tightness$^+(B) \geq \lambda^+$ instead of tightness$(B) \geq \lambda^+$ to conclude that depth$(B) \geq \lambda$. In particular we get:

Theorem 1. Suppose that Θ^* exists. Let B be a superatomic Boolean algebra in the constructible universe L, and let λ be an uncountable cardinal in V. Then in L it is true that tightness$^+(B) \geq \lambda^+$ implies that depth$^+(B) \geq \lambda$.

©1999 American Mathematical Society
Lemma 3. Assume we have that (R, λ, γ) is a limit cardinal in L; hence it suffices to show that, in L, $\text{depth}(B) \geq \kappa$ for all cardinals $\kappa < \lambda$. As was the case with the proof of Theorem C of [DM], we can’t show that, under the assumptions of Theorem 1, $\text{depth}(B) = \lambda$ is attained, i.e. that there is a well-ordered chain of length λ.

For the proof we consider the following large cardinal property:

Definition 2. Let λ, κ, θ be infinite cardinals, and let γ be an ordinal. The relation $R_\gamma(\lambda, \kappa, \theta)$ is defined as follows:

For every $c : [\lambda]^{<\omega} \to \theta$ there exists $A \subseteq \lambda$ of order-type γ, such that for every $u \in [A]^{<\omega}$ there exists $B \subseteq \lambda$ of order-type κ such that $\forall w \in [B]^{\omega} \ c(w) = c(u)$.

Lemma 3. Assume $R_\gamma(\lambda, \kappa, \theta)$, where γ is a limit ordinal. For every $c : [\lambda]^{<\omega} \to \theta$ there exists $A \subseteq \lambda$ as in the definition of $R_\gamma(\lambda, \kappa, \theta)$ such that additionally $c([A]^n)$ is constant for every $n < \omega$.

Proof. Define c' on $[\lambda]^{<\omega}$ by

$$c'(\beta_0, \ldots, \beta_{n-1}) = \{(v, c(\beta_i : i \in v)) : v \subseteq n\}.$$

As θ is infinite we can easily code the values of c' as ordinals in θ and therefore apply $R_\gamma(\lambda, \kappa, \theta)$ to it. We get $A \subseteq \lambda$ of order-type γ. We shall prove that $c([A]^n)$ is constant, for every $n < \omega$. Fix $w_1, w_2 \in [A]^n$. Since γ is a limit, without loss of generality we may assume that $\max(w_1) < \min(w_2)$. Let $w = w_1 \cup w_2$. By Definition 2 there exists $B \subseteq \lambda$, o.t.$B = \kappa$, such that $c([B]^{2n})$ is constant with value $c'(w)$. Let $(\beta_{\nu} : \nu < \kappa)$ be the increasing enumeration of B. We have

$$c'(\beta_0, \ldots, \beta_{2n-1}) = c'(\beta_n, \ldots, \beta_{3n-1}).$$

By the definition of c' we get

$$c(\beta_0, \ldots, \beta_{n-1}) = c(\beta_n, \ldots, \beta_{2n-1}) =: c_0.$$

This information is coded in $c'(\beta_0, \ldots, \beta_{2n-1})$, i.e.

$$\{(0, \ldots, n-1), c_0\}, \{(n, \ldots, 2n-1), c_0\} \in c'(\beta_0, \ldots, \beta_{2n-1}).$$

As $c'(\beta_0, \ldots, \beta_{2n-1}) = c'(w)$, we conclude $c(w_1) = c(w_2) = c_0$.

Theorem 4. Assume $R_\gamma(\lambda, \kappa, \omega)$, where γ is a limit ordinal. If B is a Boolean algebra and $(a_\nu : \nu < \lambda)$ is a sequence in B, then one of the following holds:

(a) there exists $A \subseteq \lambda$, o.t.$(A) = \gamma$, such that $(a_\nu : \nu \in A)$ is independent;

(b) there exist $n < \omega$ and a strictly increasing sequence $(\beta_\nu : \nu < \kappa)$ in λ such that, letting

$$b_\nu = \bigcup_{k<n} \bigcap_{l<n} a_{\beta_n^2 \nu + n k + l},$$

we have that $(b_\nu : \nu < \kappa)$ is constant;

(c) there exists a strictly decreasing sequence in B of length κ.

Corollary 5. Assume $R_\gamma(\lambda, \kappa, \omega)$, where γ is a limit ordinal. If B is a superatomic Boolean algebra, then tightness$^+(B) > \lambda$ implies Depth$^+(B) > \kappa$.
Proof of Corollary 5. Let \((a_\nu : \nu < \lambda)\) be a free sequence in \(B\). As a superatomic Boolean algebra does not have an infinite independent subset, (a) is impossible. Suppose (b) were true. Define \(b_\nu\) as in (\#). Clearly we have
\[-b_\nu \geq \bigcap_{k,l<n} a_{\nu+2k+2l+1}^0,\]
and
\[b_\nu \geq \bigcap_{k,l<n} a_{\alpha_n^2
u+2k+2l+1}.\]
Hence if \(\nu < \mu\) and \(b_\nu = b_\mu\), we obtain
\[0 = -b_\nu \cap b_\mu \geq \bigcap_{k,l<n} a_{\nu+2k+2l+1}^0 \cap \bigcap_{k,l<n} a_{\mu+2k+2l+1}.\]
This contradicts freeness of \((a_\nu : \nu < \kappa)\). We conclude that (c) must hold. \(\square\)

Proof of Theorem 4. Define \(c : [\lambda]^{<\omega} \rightarrow [\omega^2]^{<\omega}\) by
\[c\{\beta_0 < \cdots < \beta_{n-1}\} = \{\eta \in \omega^2 : \bigcap_{i<n} a_{\eta_i}^\eta = 0\}.
\]
Note that \(c\{\beta_0 < \cdots < \beta_{n-1}\} = c\{a_0 < \cdots < a_{n-1}\}\) implies that \(\{a_\beta_0, \ldots, a_\beta_{n-1}\}\) and \(\{a_{\alpha_0}, \ldots, a_{\alpha_{n-1}}\}\) have the same quantifier-free diagram, i.e., for every quantifier-free formula \(\phi(x_0, \ldots, x_{n-1})\) in the language of Boolean algebra,
\[B \models \phi[a_{\beta_0}, \ldots, a_{\beta_{n-1}}] \iff B \models \phi[a_{\alpha_0}, \ldots, a_{\alpha_{n-1}}].\]

Let \(A \subseteq \lambda\) be as guaranteed for \(c\) by \(R_c(\lambda, \kappa, \omega)\). By Lemma 3 we may assume that \(c[A]^\kappa\) is constant, for every \(n < \omega\).

If \((a_\alpha : \alpha \in A\) is independent, we are done. Therefore we may assume that this is false. For \(m < \omega\) define
\[\Gamma_m = \{\eta \in \omega^2 : \exists (\beta_0 < \cdots < \beta_{m-1}) \subseteq A \bigcap_{i<m} a_{\eta_i}^\eta = 0\}\]
By assumption, in the definition of \(\Gamma_m\) the existential quantifier can be replaced by a universal one to give the same set. There exists \(m < \omega\) such that \(\Gamma_m \neq \emptyset\). Define
\[\Gamma'_m = \{\eta \in \Gamma_m : \text{no proper subsequence of } \eta \text{ belongs to } \bigcup_{k<m} \Gamma_k\}.\]

By Kruskal’s Theorem [K], we have that \(\bigcup_{m<\omega} \Gamma'_m\) is finite. Let \(n^*\) be minimal such that \(\bigcup_{m<\omega} \Gamma'_m = \bigcup_{m<n^*} \Gamma'_m\). Then clearly we have that, for every \(m < \omega\) and \(\eta \in \Gamma_m, \eta\) has a subsequence in \(\bigcup_{k<n^*} \Gamma_k\). Let \(m^* = (n^*)^2\), and let
\[\tau(x_0, \ldots, x_{m^*+1}) = \bigcup_{l<n^*} \bigcap_{k<n^*} x_{n^*l+k}.
\]

Claim 1. If \(\eta \in m^*[2], t \in \{0,1\}, \text{ and } \tau[\eta(0), \ldots, \eta(m^*-1)] = t \in \text{ in the Boolean algebra } \{0,1\}, \text{ then } |\{i < m^* : \eta(i) = t\}| \geq n^*\). \(\square\)

Let \((b_\nu : \nu < \gamma)\) be the strictly increasing enumeration of \(A\), and define
\[b_\nu = \tau[a_{b_{\gamma^0,\nu}}, a_{b_{\gamma^1,\nu+1}}, \ldots, a_{b_{\gamma^{m^*},\nu+m^*}}],\]
for every \(\nu < \gamma\), where the evaluation of \(\tau\) takes place in \(B\), of course. It is easy to see that the sequence \((b_\nu : \nu < \gamma)\) inherits from \((a_\beta_\nu : \nu < \gamma)\) the property that any two finite subsequences of same length have the same quantifier-free diagram.
Claim 2. If \(\eta \in \Gamma_n \), then \(\bigcap_{i<n} b_{q(i)}^i = 0 \).

Proof of Claim 2. Otherwise there exists an ultrafilter \(D \) on \(B \) such that \(\bigcap_{i<n} b_{q(i)}^i \in D \). Define \(\zeta \in \Gamma_{nm^*} \) by \(\zeta(i) = 1 \) iff \(a_{\beta_i} \in D \). Then \(\bigcap_{i<n} a_{\beta_i}^{q(i)} \in D \), and hence \(\zeta \notin \Gamma_{nm^*} \). Let \(h : B \rightarrow B/D = \{0,1\} \) be the canonical homomorphism induced by \(D \). We calculate
\[
1 = h(\bigcap_{i<n} b_{q(i)}^i) = \bigcap_{i<n} h(b_i)^{q(i)} = \bigcap_{i<n} \tau[h(a_{\beta_{(i+1)}}), \ldots, h(a_{\beta_{m^*(i+1)}})]^{q(i)}
\]
We conclude that \(\tau[\zeta(m^*i), \ldots, \zeta(m^*(i+1) - 1)] = \eta(i) \), for all \(i < n \), and hence by Claim 1 we can choose \(j_i \in [m^*i, m^*(i+1)] \) such that \(\zeta(j_i) = \eta(i) \). Clearly \(i_0 < i_1 \) implies that \(j_{i_0} < j_{i_1} \). But this implies \(\zeta \in \Gamma_{nm^*} \), a contradiction.

Claim 3. If \(t < \omega, \eta \in \Gamma_{n} \), \(0 = k_0 < k_1 < \cdots < k_t = n \), and \(\eta \models [k_i, k_{i+1}] \) is constant for all \(i < t \), and if \(\rho \in \mathcal{P} \) is defined by \(\rho(i) = \eta(k_i) \), then \(\bigcap_{i<t} b_{q(i)}^i = 0 \).

Proof of Claim 3. Wlog we may assume that \(\eta \in \Gamma'_n \) for some \(n < n^* \). Indeed, otherwise we can find \(m < n^* \), \(\eta' \in \Gamma'_n \) and some increasing \(h : m \rightarrow n \) such that \(\eta'(i) = \eta(h(i)) \), for all \(i < m \). Then \(\{h^{-1}[k_i, k_{i+1}] : i < t \} \) equals \(\{l_i, l_{i+1} : i < s \} \) for some \(l_0 = 0 < l_1 < \cdots < l_{s-1} = m \). Note that \(\eta' \models [l_i, l_{i+1}] \) is constant, and letting \(\rho' \in \mathcal{P} \) be defined by \(\rho'(i) = \eta'(l_i) \), we have \(\rho'(i) = \rho(h(i)) \). Hence \(\bigcap_{i<s} b_{q(i)}^i = 0 \) implies \(\bigcap_{i<t} b_{q(i)}^i = 0 \).

Therefore we assume \(\eta \in \Gamma'_n \), for some \(n < n^* \). Suppose we had \(\bigcap_{i<t} b_{q(i)}^i > 0 \). Let \(D \) be an ultrafilter on \(B \) containing \(\bigcap_{i<t} b_{q(i)}^i \). Let \(h : B \rightarrow B/D \) be the canonical homomorphism. Define \(\zeta \in \Gamma_{nm^*} \) such that \(\zeta(i) = 1 \) iff \(a_i \in D \). Hence \(\zeta \notin \Gamma_{nm^*} \). We get
\[
h(\bigcap_{i<t} b_{q(i)}^i) = \bigcap_{i<t} \tau[\zeta(im^*), \ldots, \zeta((i+1)m^* - 1)]^{q(i)} = 1.
\]
Hence by Claim 1,
\[
\forall i < t \exists a_i \in \{[im^*, \ldots, (i+1)m^* - 1]\}^n \forall j \in a_i \quad \zeta(j) = \rho(i).
\]
Define \(\mu \in \Gamma_{nm^*} \) by \(\mu(j) = \rho(i) \) iff \(j \in [im^*, (i+1)n^* \). Then \(\mu \) is a subsequence of \(\zeta \) and therefore \(\mu \notin \Gamma_{nm^*} \). But also \(\eta \) is a subsequence of \(\mu \), and hence \(\eta \notin \Gamma_{n} \), a contradiction.

Claim 4. Suppose \(\rho \in \mathcal{P} \) and \(\bigcap_{i<t} b_{q(i)}^i = 0 \). Let \(\zeta \in \mathcal{P} \) be defined such that \(\zeta(m^*i) = \rho(i) \) and \(\zeta(m^*(i+1)) \) is constant for every \(i < t \). Then \(\zeta \in \Gamma_{m^*t} \).

Proof of Claim 4. Otherwise, \(\bigcap_{i<m^*} a_{q(i)}^i > 0 \). Let \(D \) be an ultrafilter containing \(\bigcap_{i<m^*} a_{q(i)}^i \). Let \(h : B \rightarrow B/D \) be the canonical homomorphism. We have
\[
h(\bigcap_{i<t} b_{q(i)}^i) = \bigcap_{i<t} \tau[\zeta(m^*i), \ldots, \zeta(m^*(i+1) - 1)]^{q(i)} = \bigcap_{i<t} \tau[\rho(i), \ldots, \rho(i)]^{q(i)} = 1.
\]
This is a contradiction.

Since we assume that \((a_\alpha : \alpha \in A) \) is not independent, by Claim 2 we can find \(k^* < \omega \) minimal such that for some \(\rho^* \in \mathcal{P} \), \(\bigcap_{i<k^*} b_{q(i)}^i = 0 \). Note that \(\rho^*(i+1) \neq \rho^*(i) \) for every \(i < k^* - 1 \). Indeed, otherwise let \(\zeta \in m^*k^* \) be defined
as in Claim 4. So \(\zeta \in \Gamma_{m^*k^*} \). By Claim 3 we can find \(\rho' \) of shorter length than \(\rho^* \) such that \(\cap_{i \in c} b_i^{\rho(i)} = 0 \), contradicting the minimal choice of \(k^* \).

Suppose first that \(k^* = 1 \). We conclude that \((b_\nu : \nu < \gamma)\) either is constantly 1 or 0. The main part of the definition of \(R_\gamma(\lambda, \kappa, \omega) \) then gives a sequence of length \(\kappa \) as desired in (b) of Theorem 4.

Second suppose \(k^* > 1 \). If \(\cap_{i < k^* - 2} b_i^{\rho'(i)} \cap b_{k^* - 2}^{\rho'(i)} = 0 \) and \(\cap_{i < k^* - 2} b_i^{\rho'(i)} \cap b_{k^* - 1}^{\rho'(i)} = 0 \), then \(\cap_{i < k^* - 2} b_i^{\rho'(i)} \cap b_{k^* - 2}^{\rho'(i)} \cap b_{k^* - 1}^{\rho'(i)} = \cap_{i < k^* - 2} b_i^{\rho'(i)} \cap b_{k^* - 1}^{\rho'(i)} \), and an application of the main part of the definition of \(R_\gamma(\lambda, \kappa, \omega) \) gives a sequence as desired in (b).

Otherwise, if \(\rho'(k^* - 2) = 1 \) and \(\rho'(k^* - 1) = 0 \), then

\[
\cap_{i < k^* - 2} b_i^{\rho'(i)} \cap b_{k^* - 2}^{\rho'(i)} < \cap_{i < k^* - 2} b_i^{\rho'(i)} \cap b_{k^* - 1}^{\rho'(i)},
\]

and applying the definition gives (c). A similar argument applies if \(\rho'(k^* - 2) = 0 \) and \(\rho'(k^* - 1) = 1 \).

Theorem 6. Assume the following:

1. \(\mathcal{B} \) exists,
2. \(V \models \lambda \) is an uncountable cardinal,
3. \(\kappa, \theta < \lambda \), and \(L \models \kappa \) is a regular cardinal.

Then \(L \models R_\omega(\lambda, \kappa, \theta) \).

Proof. Let \(c : [\lambda]^{<\omega} \to \theta, c \in L \), be arbitrary.

Let \(Y \) be the set of all \(w \in [\lambda]^{<\omega} \) such that for every \(n \leq |w| \) and \(u \in [w]^n \) there exists \(B \subseteq \lambda \) of order-type \(\kappa \) in \(L \) such that \(\forall v \in [B]^n \ c(u) = c(v) \). Clearly \(Y \in L \).

Claim 1. If in \(V \) there exists \(A \subseteq [\lambda]^{<\omega} \subseteq Y \), then \(L \models R_\omega(\lambda, \kappa, \theta) \).

Proof of Claim 1. Let \(T \) be the set of all one-to-one sequences \(\rho \in <\omega \lambda \) with \(\text{ran}(\rho) \in Y \), ordered by extension. Then \(T \) is a tree and by assumption, \(T \) has an \(\omega \)-branch in \(V \). By absoluteness, \(T \) has an \(\omega \)-branch \(b \) in \(L \). Then \(\text{ran}(b) \) (or some subset) witnesses \(L \models R_\omega(\lambda, \kappa, \theta) \).

Let \((i_\nu : \nu < \lambda^+)\) be the increasing enumeration of the club of indiscernibles of \(L_{\lambda^+} \). Then \((i_\nu : \nu < \lambda)\) is the club of indiscernibles of \(L_{\lambda} \). As \(c \in L_{\lambda^+} \) there exist ordinals \(\xi_0 < \cdots < \xi_p < \xi < \xi_{p+1} < \lambda^+ \) and a Skolem term \(t_c \) such that

\[L_{\lambda^+} \models c = t_c[i_{\xi_0}, \ldots, i_{\xi_{p+1}}]. \]

By indiscernibility and remarkability (see [J, p.345]) it easily follows that if \(\alpha^* = \max\{\xi_p - 1, \theta\} + 1 \), then \(c[\{i_\nu : \alpha^* \leq \nu < \lambda\}]^n \) is constant for every \(n \leq \omega \), say with value \(c_n \). Let \(n < \omega \) be arbitrary. Let \(\delta_0 = i_{\alpha^* + \kappa}, \delta_1 = i_{\alpha^* + \kappa + 1}, \ldots, \delta_n - 1 = i_{\alpha^* + \kappa + n - 1} \).

Claim 2. For every \(\alpha < \delta_0 \) there exists a limit \(\delta, \alpha < \delta < \delta_0 \), such that for all \(\beta_0 < \cdots < \beta_{n-2} < \delta \) the following hold:

1. \(c[\delta, \beta_0, \ldots, \beta_{n-2}, \delta] = c[\delta_0, \ldots, \delta_{n-1}] \)
2. \(c[\delta, \beta_0, \beta_1, \ldots, \beta_{n-2}, \delta] = c[\delta_0, \delta_1, \ldots, \delta_{n-1}] \)
3. \(c[\delta, \beta_0, \beta_1, \beta_2, \ldots, \beta_{n-2}, \delta] = c[\delta_0, \beta_1, \beta_2, \ldots, \delta_{n-1}] \)
4. \(c[\delta, \beta_0, \beta_1, \beta_2, \beta_3, \ldots, \beta_{n-2}, \delta] = c[\delta_0, \beta_1, \beta_2, \beta_3, \ldots, \delta_{n-1}] \)
5. \(\vdots \)
6. \(c[\delta, \beta_0, \beta_1, \beta_2, \ldots, \beta_{n-2}, \delta] = c[\delta_0, \ldots, \beta_{n-2}, \delta_{n-1}] \).
Proof of Claim 2. Let \(\alpha < \delta_0 \) be arbitrary. Choose \(\gamma < \kappa \) such that \(\gamma \) is a limit and \(i_{\alpha^*+\gamma} > \alpha \), and let \(\delta = i_{\alpha^*+\gamma} \).

Then clearly \((*)_0\) holds.

In order to prove \((*)_1\), let \(\beta < \delta \) be arbitrary. There exist ordinals \(\nu_0 < \cdots < \nu_{k-1} < \alpha^* + \gamma \) and a Skolem term \(t_\beta \) such that

\[
t^b_\beta [i_{\nu_0}, \ldots, i_{\nu_{k-1}}] = \beta.
\]

Moreover there exist ordinals \(\mu_0 < \cdots < \mu_{l-1} < \alpha^* \) and a Skolem term \(t \) such that

\[
L_\lambda^+ \models t[i_{\mu_0}, \ldots, i_{\mu_{l-1}}] = t_c[i_{\xi_0}, \ldots, i_{\xi_{q-1}}] \{t_\beta[i_{\nu_0}, \ldots, i_{\nu_{k-1}}], \delta_1, \ldots, \delta_{n-1}\}.
\]

Note that all indices of occurring indiscernibles, except for \((+)\)

\[
\text{Order-type } \kappa \text{ such that } t \kappa \in Y \\ \Longrightarrow \text{Obtain } \gamma \nu \\
\text{Here } \gamma \nu \in [B]^n \quad c(\nu) = c\nu. \text{ Fix } n < \omega. \text{ Working in L, we construct } B \text{ inductively as } \{\gamma_\nu : \nu < \kappa\}.
\]

Fix \(\delta_0 < \delta_1 < \cdots < \delta_{n-2} < \lambda \) as above. Apply Claim 2 in \(\lambda = 0 \) and obtain \(\gamma_0 \in (0, \delta_0) \). Suppose we have gotten \(\gamma_{\nu_0} < \cdots < \gamma_{\nu_{n-1}} \) be arbitrary. We have

\[
(\gamma_{\nu_0})_{n-1} c(\gamma_{\nu_0}, \ldots, \gamma_{\nu_{n-2}}, \delta_{n-1})
\]

\[
= \cdots
\]

\[
= c(\gamma_{\nu_0}, \delta_1, \ldots, \delta_{n-1})
\]

\[
= (\nu_0)_n. \quad \Box
\]

References

Institute of Mathematics, Hebrew University, Givat Ram, 91904 Jerusalem, Israel

E-mail address: shelah@math.huji.ac.il

Mathematik, ETH-Zentrum, 8092 Zürich, Switzerland

E-mail address: spinas@math.ethz.ch