Convergence of the steepest descent

method for accretive operators

Authors:
Claudio H. Morales and Charles E. Chidume

Journal:
Proc. Amer. Math. Soc. **127** (1999), 3677-3683

MSC (1991):
Primary 47H10

DOI:
https://doi.org/10.1090/S0002-9939-99-04975-8

Published electronically:
May 11, 1999

MathSciNet review:
1616629

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a uniformly smooth Banach space and let be a bounded demicontinuous mapping, which is also -strongly accretive on . Let and let be an arbitrary initial value in . Then the approximating scheme

converges strongly to the unique solution of the equation , provided that the sequence fulfills suitable conditions.

**1.**R. E. Bruck, Jr.,*The iterative solution of the equation for a monotone operator in Hilbert space*, Bull. Amer. Math. Soc.**79**(1973), 1258-1261. MR**48:7034****2.**C. E. Chidume,*Iterative approximation of fixed points of Lipschitzian strictly pseudocontractive mappings*, Proc. Amer. Math. Soc.**99**(1987), 283-288. MR**87m:47122****3.**-,*Approximation of fixed points of strongly pseudo-contractive mappings*, Proc. Amer. Math. Soc.**120**(1994), 545-551. MR**94d:47056****4.**-,*Steepest descent approximations for accretive operator equations*, Nonlinear Anal. Theory Methods Appl.**26**(1996), 299-311. MR**97b:47067****5.**M. G. Crandall and A. Pazy,*On the range of accretive operators*, Israel J. Math.**27**(1977), 235-246. MR**56:1142****6.**K. Deimling,*Zeros of accretive operators*, Manuscripta Math.**13**(1974), 365-374. MR**50:3030****7.**W. G. Dotson, Jr.,*An iterative process for monotonic nonexpansive operators in Hilbert Space*, Math. Comp.**32**(1978), 223-225. MR**57:10524****8.**A. G. Kartsatos,*Zeros of demicontinuous accretive operators in Banach spaces*, J. Integral Eqns.**8**(1985), 175-184. MR**86j:47078****9.**L. Liu,*Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces*, J. Math. Anal. Appl.**194**(1995), 114-125. MR**97g:47069****10.**R. H. Martin,*Differential equations on closed subsets of a Banach space*, Trans. Amer. Math. Soc.**179**(1973), 399-414. MR**47:7537****11.**C. H. Morales,*Zeros for accretive operators satisfying certain boundary conditions*, J. Math. Anal. Appl.**105**(1985), 167-175. MR**86h:47090****12.**-,*Surjectivity theorems for multi-valued mappings of accretive type*, Comment. Math. Univ. Carol.**26**(1985), 397-413. MR**87c:47074****13.**W. V. Petryshyn,*On the extension and solution of nonlinear operator equations*, Illinois J. Math.**10**(1966), 255-274. MR**34:8242****14.**S. Reich,*An iterative procedure for constructing zeros of accretive sets in Banach spaces*, Nonlinear Anal. Theory Methods Appl.**2**(1978), 85-92. MR**81b:47065****15.**K. K. Tan and H. K. Xu,*Iterative solutions to nonlinear equations of strongly accretive operators in Banach spaces*, J. Math. Anal. Appl.**178**(1993), 9-21. MR**94g:47085****16.**M. M. Vainberg,*On the convergence of the method of steepest descent for nonlinear equations*, Sibirsk Mat. Z. (1961), 201-220. MR**23A:4026****17.**Z. Xu and G. F. Roach,*A necessary and sufficient condition for convergence of steepest descent approximation to accretive operator equations*, J. Math. Anal. Appl.**167**(1992), 340-354. MR**93e:47086****18.**E. H. Zarantonello,*The closure of the numerical range contains the spectrum*, Bull. Amer. Math. Soc.**70**(1964), 781-783. MR**30:3389**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
47H10

Retrieve articles in all journals with MSC (1991): 47H10

Additional Information

**Claudio H. Morales**

Affiliation:
Department of Mathematics, University of Alabama in Huntsville, Huntsville, Alabama 35899

Email:
morales@math.uah.edu

**Charles E. Chidume**

Affiliation:
International Centre for Theoretical Physics, P. O. Box 586, 34100, Trieste, Italy

Email:
chidume@ictp.trieste.it

DOI:
https://doi.org/10.1090/S0002-9939-99-04975-8

Keywords:
Uniformly smooth space,
$\alpha$-strongly accretive

Published electronically:
May 11, 1999

Communicated by:
Palle E. T. Jorgensen

Article copyright:
© Copyright 1999
American Mathematical Society