Irreducible representations

of the Cuntz algebra

Author:
Eui-Chai Jeong

Journal:
Proc. Amer. Math. Soc. **127** (1999), 3583-3590

MSC (1991):
Primary 46L30, 46L55, 46L89, 47A13, 47A67; Secondary 47A20, 47D25, 43A65

DOI:
https://doi.org/10.1090/S0002-9939-99-05018-2

Published electronically:
May 17, 1999

MathSciNet review:
1621953

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we establish formulas for the configuration of a special class of irreducible representations of the Cuntz algebra , . These irreducible representations arise as subrepresentations of naturally occurring representations of acting in and arise from consideration of multiresolution wavelet filters.

**[BEEK]**Ola Bratteli, George A. Elliott, David E. Evans, and Akitaka Kishimoto,*Quasi-product actions of a compact abelian group on a -algebra*, Tohoku Math. J.**41**(1989), 133-161. MR**90f:46103****[BraJo]**Ola Bratteli and Palle E.T. Jorgensen,*Iterated function systems and permutation representations of the Cuntz algebra*, Mem. Amer. Math. Soc., to appear. CMP**98:01****[BraJo97a]**Ola Bratteli and Palle E.T. Jorgensen,*Endomorphisms of , II: Finitely correlated states on*, J. Funct. Anal.**145**(1997), 323-373. MR**98c:46128****[BraJo97b]**Ola Bratteli and Palle E.T. Jorgensen,*Isometries, shifts, Cuntz algebras and multiresolution wavelet analysis of scale*, Integral Equations Operator Theory**28**(1997), 382-443. CMP**97:17****[BJP]**Ola Bratteli, Palle E.T. Jorgensen, and Geoffrey L. Price,*Endomorphisms of*, Quantization, nonlinear partial differential equations, and operator algebra (William Arveson, Thomas Branson, and Irving Segal, eds.), Proc. Sympos. Pure Math., vol. 59, American Mathematical Society, 1996, pp. 93-138. MR**97h:46107****[CoRy]**Albert Cohen and Robert D. Ryan,*Wavelets and multiscale signal processing*, Applied Mathematics and Mathematical Computation, vol. 11, Chapman & Hall, London, 1995. MR**97k:42048****[Cun77]**Joachim Cuntz,*Simple -algebras generated by isometries*, Comm. Math. Phys.**57**(1977), 173-185. MR**57:7189****[Dau92]**Ingrid Daubechies,*Ten lectures on wavelets*, CBMS-NSF Regional Conf. Ser. in Appl. Math., vol. 61, Society for Industrial and Applied Mathematics, Philadelphia, 1992. MR**93e:42045****[JeongI]**Eui-Chai Jeong,*Decomposition of Cuntz algebra representation*, Ph.D. thesis, The University of Iowa, 1997.**[JeongII]**Eui-Chai Jeong,*A number system in*, Seoul National University, in preparation.**[Jor]**Palle E.T. Jorgensen,*Harmonic analysis of fractal processes via -algebras*, Math. Nachr., to appear.**[JoPe94]**Palle E.T. Jorgensen and Steen Pedersen,*Harmonic analysis and fractal limit-measures induced by representations of a certain -algebra*, J. Funct. Anal.**125**(1994), 90-110. MR**95i:47067****[JoPe96]**Palle E.T. Jorgensen and Steen Pedersen,*Harmonic analysis of fractal measures*, Constr. Approx.**12**(1996), 1-30. MR**97c:46091****[Pow88]**Robert T. Powers,*An index theory for semigroups of -endomorphisms of and type factors*, Canad. J. Math.**40**(1988), 86-114. MR**89f:46116**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
46L30,
46L55,
46L89,
47A13,
47A67,
47A20,
47D25,
43A65

Retrieve articles in all journals with MSC (1991): 46L30, 46L55, 46L89, 47A13, 47A67, 47A20, 47D25, 43A65

Additional Information

**Eui-Chai Jeong**

Affiliation:
Department of Mathematics, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea

Email:
jeong@cau.ac.kr

DOI:
https://doi.org/10.1090/S0002-9939-99-05018-2

Keywords:
$C^{\ast}$\nobreakdash-algebra,
wavelet,
irreducible representation

Received by editor(s):
February 16, 1998

Published electronically:
May 17, 1999

Communicated by:
David R. Larson

Article copyright:
© Copyright 1999
American Mathematical Society