Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

An uncertainty inequality involving $L^{1}$ norms


Authors: Enrico Laeng and Carlo Morpurgo
Journal: Proc. Amer. Math. Soc. 127 (1999), 3565-3572
MSC (1991): Primary 26D15, 42A82
DOI: https://doi.org/10.1090/S0002-9939-99-05022-4
Published electronically: May 17, 1999
MathSciNet review: 1621969
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We derive a sharp uncertainty inequality of the form

\begin{equation*}\|x^{2} f\|_{1}^{} \,\|\xi \;\,\hat {\!\!f}\|_{2}^{2}\ge {\frac{\Lambda _{0}}{4\pi ^{2}}}\, \|f\|_{1}^{}\,\|f\|_{2}^{2},\end{equation*}

with $\Lambda _{0}=0.428368\dots $. As a consequence of this inequality we derive an upper bound for the so-called Laue constant, that is, the infimum $\lambda _{0}^{}$ of the functional $\lambda (p)=4\pi ^{2} \|x^{2} p\|_{1}^{}\|x^{2} \hat p\|_{1}^{}/(p(0)\hat p(0))$, taken over all $p\ge 0$ with $\hat p\ge 0\;$ ($p\not \equiv 0$). Precisely, we obtain that $\lambda _{0}^{}\le 2\Lambda _{0}=0.85673673\dots ,$ which improves a previous bound of T. Gneiting.


References [Enhancements On Off] (What's this?)

  • [B] W. Beckner, Geometric inequalities in Fourier analysis, Essays on Fourier Analysis in Honor of Elias M. Stein, Princeton University Press, 1995, 36-68. MR 95m:42004
  • [CL] E.A. Carlen and M. Loss, Sharp constant in Nash's inequality, Int. Mat. Res. Notices (1993), 301-305. MR 95f:26022
  • [D] I. Dreier, On the uncertainty principle for positive definite densities, Zeitschrift für Analysis und ihre Anwendungen 15 (1996), 1015-1023. MR 98c:60014
  • [FS] G.B. Folland and A. Sitaram , The uncertainty principle: a mathematical survey, The Journal of Fourier Analysis and Applications 3 (1997), 207-238. MR 98f:42006
  • [G] T. Gneiting , On the uncertainty relation for positive definite probability densities, to appear in Statistics.
  • [L] E.H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. 118 (1983), 349-374. MR 86i:42010
  • [LL] E.H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics v. 14, American Mathematical Society, Providence, Rhode Island, 1997. MR 98b:00004
  • [MPF] D.S. Mitrinovi\'{c}, J.E. Pe\v{c}ari\'{c} and A.M. Fink, Inequalities Involving Functions and Their Integrals and Derivatives, Kluwer Academic Publishers, Dordrech/Boston/London, 1991. MR 93m:26036
  • [N] B.Sz. Nagy, Über integralungleichungen zwischen einer funktion und ihrer ableitung, Acta Sci. Math. (Szeged) 10 (1941), 64-74. MR 2:351b
  • [R] H.J. Rossberg , Positive definite densities and probability distributions, Journal of Mathematical Sciences 76 (1995), 2181-2197. MR 96h:60027

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 26D15, 42A82

Retrieve articles in all journals with MSC (1991): 26D15, 42A82


Additional Information

Enrico Laeng
Affiliation: Dipartimento di Matematica, Politecnico di Milano, 20133 Milano, Italy
Email: enrlae@mate.polimi.it

Carlo Morpurgo
Affiliation: Dipartimento di Matematica, Università degli Studi di Milano, 20133 Milano, Italy
Email: morpurgo@dsdipa.mat.unimi.it

DOI: https://doi.org/10.1090/S0002-9939-99-05022-4
Received by editor(s): February 13, 1998
Published electronically: May 17, 1999
Additional Notes: The second author was partially supported by NSF grant DMS-9622891.
Communicated by: Christopher D. Sogge
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society