Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On X-ray transforms for rigid line complexes
and integrals over curves in $\mathbb{R}^4$


Authors: Allan Greenleaf, Andreas Seeger and Stephen Wainger
Journal: Proc. Amer. Math. Soc. 127 (1999), 3533-3545
MSC (1991): Primary 44A12; Secondary 35S30
DOI: https://doi.org/10.1090/S0002-9939-99-05379-4
Published electronically: August 5, 1999
MathSciNet review: 1670367
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Endpoint estimates are proved for model cases of restricted X-ray transforms and singular fractional integral operators in $\mathbb{R}^{4}$.


References [Enhancements On Off] (What's this?)

  • 1. J. Bergh and J. Löfström, Interpolation spaces, Grundlehren der mathematischen Wissenschaften, 223, Springer Verlag, 1976. MR 58:2349
  • 2. J. Bourgain, Estimations de certaines fonctions maximales, C. R. Acad. Sc. Paris, 301 (1985), 499-502. MR 87b:42023
  • 3. M. Christ, On the restriction of the Fourier transform to curves: endpoint results and the degenerate case, Trans. Amer. Math. Soc. 287 (1985), 223-238. MR 87b:42018
  • 4. -, Endpoint bounds for singular fractional integral operators, preprint, unpublished (1988).
  • 5. I.M.Gelfand and M.I. Graev, Line complexes in the space ${\mathbb{C}}^{n}$, Func. Ann. Appl. 2 (1968), 219-229. MR 38:6522
  • 6. A. Greenleaf and A. Seeger, Fourier integral operators with fold singularities, Jour. reine ang. Math. 455 (1994), 35-56. MR 95h:58130
  • 7. -, Fourier integral operators with cusp singularities, Amer. J. Math. 120 (1998), 1077-1119. CMP 99:01
  • 8. A. Greenleaf and G. Uhlmann, Nonlocal inversion formulas for the X-ray transform, Duke Math. J. 58 (1989), 205-240. MR 91b:58251
  • 9. W. Littman, $L^{p}-L^{q}$-estimates for singular integral operators, Proc. Symp. Pure and Appl. Math. Amer. Math. Soc. 23 (1973), 479-481. MR 50:10909
  • 10. D. McMichael, Damping oscillatory integrals with polynomial phases, Math. Scand. 73 (1993), 215-228. MR 95f:42020
  • 11. G. Mockenhaupt, A. Seeger and C.D. Sogge, Wave front sets, local smoothing and Bourgain's circular maximal theorem, Annals of Math. 136 (1992), 207-218. MR 93i:42009
  • 12. A. Nagel, E. M. Stein and S. Wainger, Differentiation in lacunary directions, Proc. Nat. Acad. Sc. USA 75 (1978), 1060-1062. MR 57:6349
  • 13. D. Oberlin, Convolution estimates for some measures on curves, Proc. Amer. Math. Soc. 99 (1987), 56-60. MR 88f:42033
  • 14. -, Oscillatory integrals with polynomial phase, Math. Scand. 69 (1991), 45-56. MR 93c:41048
  • 15. -, A convolution estimate for a measure on a curve in $\mathbb R^{4}$, Proc. Amer. Math. Soc. 125 (1997), 1355-1361; II, Proc. Amer. Math. Soc. 127 (1999), 217-221. MR 97g:42009; CMP 99:01
  • 16. -, An estimate for a restricted X-ray transform, preprint.
  • 17. F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals III: Fractional integration along manifolds, J. Funct. Anal. 86 (1989), 360-389. MR 90m:22027
  • 18. S. Secco, Fractional integration along homogeneous curves in $\mathbb{R}^{3}$, preprint.
  • 19. E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, N.J., 1971. MR 46:4102
  • 20. R. Strichartz, Convolutions with kernels having singularities on the sphere, Trans. Amer. Math. Soc. 148 (1970), 461-471. MR 41:876

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 44A12, 35S30

Retrieve articles in all journals with MSC (1991): 44A12, 35S30


Additional Information

Allan Greenleaf
Affiliation: Department of Mathematics, University of Rochester, Rochester, New York 14627
Email: allan@math.rochester.edu

Andreas Seeger
Affiliation: Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
Email: seeger@math.wisc.edu

Stephen Wainger
Email: wainger@math.wisc.edu

DOI: https://doi.org/10.1090/S0002-9939-99-05379-4
Received by editor(s): January 13, 1998
Published electronically: August 5, 1999
Additional Notes: This research was supported in part by grants from the National Science Foundation.
Communicated by: Christopher D. Sogge
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society