Spectral multiplier theorem for spaces

associated with some Schrödinger operators

Author:
Jacek Dziubanski

Journal:
Proc. Amer. Math. Soc. **127** (1999), 3605-3613

MSC (1991):
Primary 42B30, 35J10; Secondary 42B15, 42B25, 43A80

DOI:
https://doi.org/10.1090/S0002-9939-99-05413-1

Published electronically:
July 23, 1999

MathSciNet review:
1676352

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be the semigroup of linear operators generated by a Schrödinger operator , where is a nonnegative polynomial. We say that is an element of if the maximal function belongs to . A criterion on functions which implies boundedness of the operators on is given.

**[1]**M. Christ,*bounds for spectral multipliers on nilpotent groups*, Trans. Amer. Math. Soc. 328 (1991), 73-81. MR**92k:42017****[2]**M. Cowling,*Harmonic analysis on semigroups*, Ann. of Math. 117 (1983), 267-283. MR**84h:43004****[3]**L. De Michele and G. Mauceri,*multipliers on stratified groups,*Ann. Math. Pura Appl. 148 (1987), 353-366. MR**89e:43009****[4]**J. Dziuba\'{n}ski, A. Hulanicki and J.W. Jenkins,*A nilpotent Lie algebra and eigenvalue estimates*, Colloq. Math. 68 (1995), 7-16. MR**96c:22014****[5]**J. Dziuba\'{n}ski,*A note on Schrödinger operators with polynomial potentials*, Colloq. Math. 78 (1998), 149-161. CMP**99:04****[6]**J. Dziuba\'{n}ski and J. Zienkiewicz,*Hardy spaces associated with some Schrödinger operators*, Studia Math. 126 (1997), 149-160. MR**98k:42029****[7]**W. Hebisch,*A multiplier theorem for Schrödinger operators*, Coll. Math. 60/61 (1990), 659-664. MR**93f:47055****[8]**W. Hebisch,*Functional calculus for slowly decaying kernels*, preprint University of Wroc{\l}aw.**[9]**W. Hebisch and J. Zienkiewicz,*Multiplier theorems on generalized Heisenberg groups II*, Colloq. Math. 69 (1995), 29-36. MR**96h:43007****[10]**G. Folland and E. Stein,*Hardy Spaces on Homogeneous Groups*, Princeton University Press, 1982. MR**84h:43027****[11]**D. Müller and E. Stein,*On spectral multipliers for Heisenberg and related groups*, J. Math. Pures Appl. 73 (1994), 413-440. MR**96m:43004****[12]**E.M. Stein,*Topics in Harmonic Analysis Related to the Littlewood-Paley Theory*, Princeton University Press, Princeton 1970. MR**40:6176****[13]**J. Zhong,*Harmonic analysis for Schrödinger type operators*, Ph. D. thesis, Princeton Univ. 1993.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
42B30,
35J10,
42B15,
42B25,
43A80

Retrieve articles in all journals with MSC (1991): 42B30, 35J10, 42B15, 42B25, 43A80

Additional Information

**Jacek Dziubanski**

Affiliation:
Institute of Mathematics, University of Wrocław, Plac Grunwaldzki 2/4, 50-384 Wrocław, Poland

Email:
jdziuban@math.uni.wroc.pl

DOI:
https://doi.org/10.1090/S0002-9939-99-05413-1

Received by editor(s):
February 17, 1998

Published electronically:
July 23, 1999

Additional Notes:
This research was partially supported by the European Commission via TMR network “Harmonic Analysis", and by grant 2 P03A 058 14 from KBN, Poland.

Communicated by:
Christopher D. Sogge

Article copyright:
© Copyright 1999
American Mathematical Society