Spectral multiplier theorem for spaces

associated with some Schrödinger operators

Author:
Jacek Dziubanski

Journal:
Proc. Amer. Math. Soc. **127** (1999), 3605-3613

MSC (1991):
Primary 42B30, 35J10; Secondary 42B15, 42B25, 43A80

Published electronically:
July 23, 1999

MathSciNet review:
1676352

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be the semigroup of linear operators generated by a Schrödinger operator , where is a nonnegative polynomial. We say that is an element of if the maximal function belongs to . A criterion on functions which implies boundedness of the operators on is given.

**[1]**Michael Christ,*𝐿^{𝑝} bounds for spectral multipliers on nilpotent groups*, Trans. Amer. Math. Soc.**328**(1991), no. 1, 73–81. MR**1104196**, 10.1090/S0002-9947-1991-1104196-7**[2]**Michael G. Cowling,*Harmonic analysis on semigroups*, Ann. of Math. (2)**117**(1983), no. 2, 267–283. MR**690846**, 10.2307/2007077**[3]**Leonede De Michele and Giancarlo Mauceri,*𝐻^{𝑝} multipliers on stratified groups*, Ann. Mat. Pura Appl. (4)**148**(1987), 353–366. MR**932770**, 10.1007/BF01774295**[4]**Jacek Dziubański, Andrzej Hulanicki, and Joe Jenkins,*A nilpotent Lie algebra and eigenvalue estimates*, Colloq. Math.**68**(1995), no. 1, 7–16. MR**1311757****[5]**J. Dziuba\'{n}ski,*A note on Schrödinger operators with polynomial potentials*, Colloq. Math. 78 (1998), 149-161. CMP**99:04****[6]**Jacek Dziubański and Jacek Zienkiewicz,*Hardy spaces associated with some Schrödinger operators*, Studia Math.**126**(1997), no. 2, 149–160. MR**1472695****[7]**Waldemar Hebisch,*A multiplier theorem for Schrödinger operators*, Colloq. Math.**60/61**(1990), no. 2, 659–664. MR**1096404****[8]**W. Hebisch,*Functional calculus for slowly decaying kernels*, preprint University of Wroc{\l}aw.**[9]**Waldemar Hebisch and Jacek Zienkiewicz,*Multiplier theorem on generalized Heisenberg groups. II*, Colloq. Math.**69**(1995), no. 1, 29–36. MR**1341678****[10]**G. B. Folland and Elias M. Stein,*Hardy spaces on homogeneous groups*, Mathematical Notes, vol. 28, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1982. MR**657581****[11]**D. Müller and E. M. Stein,*On spectral multipliers for Heisenberg and related groups*, J. Math. Pures Appl. (9)**73**(1994), no. 4, 413–440. MR**1290494****[12]**Elias M. Stein,*Topics in harmonic analysis related to the Littlewood-Paley theory.*, Annals of Mathematics Studies, No. 63, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1970. MR**0252961****[13]**J. Zhong,*Harmonic analysis for Schrödinger type operators*, Ph. D. thesis, Princeton Univ. 1993.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
42B30,
35J10,
42B15,
42B25,
43A80

Retrieve articles in all journals with MSC (1991): 42B30, 35J10, 42B15, 42B25, 43A80

Additional Information

**Jacek Dziubanski**

Affiliation:
Institute of Mathematics, University of Wrocław, Plac Grunwaldzki 2/4, 50-384 Wrocław, Poland

Email:
jdziuban@math.uni.wroc.pl

DOI:
http://dx.doi.org/10.1090/S0002-9939-99-05413-1

Received by editor(s):
February 17, 1998

Published electronically:
July 23, 1999

Additional Notes:
This research was partially supported by the European Commission via TMR network “Harmonic Analysis", and by grant 2 P03A 058 14 from KBN, Poland.

Communicated by:
Christopher D. Sogge

Article copyright:
© Copyright 1999
American Mathematical Society