Automatic surjectivity of ring homomorphisms on algebras and algebraic differences among some group algebras of compact groups
Author:
Lajos Molnár
Journal:
Proc. Amer. Math. Soc. 128 (2000), 125134
MSC (1991):
Primary 46K15, 47D50, 47B49; Secondary 43A15, 43A22
Published electronically:
June 30, 1999
MathSciNet review:
1616645
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In this paper we present two automatic surjectivity results concerning ring homomorphisms between classes of an algebra which, in some sense, improve the main theorem in a recent paper by the author (Proc. Amer. Math. Soc. 124 (1996), 169175) quite significantly. Furthermore, we apply our results to show that for arbitrary infinite compact groups , no quotient ring of is isomorphic to , a statement we conjecture to be true for every pair of group rings corresponding to different exponents .
 [AD]
J.
Aczél and J.
Dhombres, Functional equations in several variables,
Encyclopedia of Mathematics and its Applications, vol. 31, Cambridge
University Press, Cambridge, 1989. With applications to mathematics,
information theory and to the natural and social sciences. MR 1004465
(90h:39001)
 [Amb]
Warren
Ambrose, Structure theorems for a special class
of Banach algebras, Trans. Amer. Math. Soc.
57 (1945),
364–386. MR 0013235
(7,126c), http://dx.doi.org/10.1090/S00029947194500132358
 [Arn]
B.
H. Arnold, Rings of operators on vector spaces, Ann. of Math.
(2) 45 (1944), 24–49. MR 0009425
(5,147c)
 [Dra]
D.D. Draghia, Continuitate in Algebre Banach, Editure didactica si pedagogica, Bucuresti, 1995.
 [Eid]
M.
Eidelheit, On isomorphisms of rings of linear operators,
Studia Math. 9 (1940), 97–105 (English, with
Ukrainian summary). MR 0004725
(3,51e)
 [GK]
I.
C. Gohberg and M.
G. Kreĭn, Introduction to the theory of linear
nonselfadjoint operators, Translated from the Russian by A. Feinstein.
Translations of Mathematical Monographs, Vol. 18, American Mathematical
Society, Providence, R.I., 1969. MR 0246142
(39 #7447)
 [HR]
Edwin
Hewitt and Kenneth
A. Ross, Abstract harmonic analysis. Vol. II: Structure and
analysis for compact groups. Analysis on locally compact Abelian
groups, Die Grundlehren der mathematischen Wissenschaften, Band 152,
SpringerVerlag, New YorkBerlin, 1970. MR 0262773
(41 #7378)
 [Kap]
Irving
Kaplansky, Ring isomorphisms of Banach algebras, Canadian J.
Math. 6 (1954), 374–381. MR 0062960
(16,49e)
 [Kuc]
Marek
Kuczma, An introduction to the theory of functional equations and
inequalities, Prace Naukowe Uniwersytetu Śląskiego w
Katowicach [Scientific Publications of the University of Silesia],
vol. 489, Uniwersytet Śląski, Katowice; Państwowe
Wydawnictwo Naukowe (PWN), Warsaw, 1985. Cauchy’s equation and
Jensen’s inequality; With a Polish summary. MR 788497
(86i:39008)
 [Mol1]
Lajos
Molnár, 𝑝classes of an 𝐻*algebra and their
representations, Acta Sci. Math. (Szeged) 58 (1993),
no. 14, 411–423. MR 1264246
(95c:46081)
 [Mol2]
Lajos
Molnár, Algebraic difference between
𝑝classes of an 𝐻*algebra, Proc. Amer. Math. Soc. 124 (1996), no. 1, 169–175. MR 1291787
(96d:46072), http://dx.doi.org/10.1090/S0002993996030481
 [Mol3]
Lajos
Molnár, The range of a ring homomorphism from
a commutative 𝐶*algebra, Proc. Amer.
Math. Soc. 124 (1996), no. 6, 1789–1794. MR 1307551
(96h:46090), http://dx.doi.org/10.1090/S0002993996032364
 [New]
J.
D. Newburgh, The variation of spectra, Duke Math. J.
18 (1951), 165–176. MR 0051441
(14,481b)
 [SF]
Parfeny
P. Saworotnow and John
C. Friedell, Traceclass for an arbitrary
𝐻*algebra, Proc. Amer. Math. Soc.
26 (1970),
95–100. MR
0267402 (42 #2304), http://dx.doi.org/10.1090/S00029939197002674029
 [SG]
Parfeny
P. Saworotnow and George
R. Giellis, Continuity and linearity of
centralizers on a complemented algebra., Proc.
Amer. Math. Soc. 31
(1972), 142–146. MR 0288585
(44 #5781), http://dx.doi.org/10.1090/S00029939197202885852
 [Sem]
Peter
Šemrl, Isomorphisms of standard operator
algebras, Proc. Amer. Math. Soc.
123 (1995), no. 6,
1851–1855. MR 1242104
(95g:47066), http://dx.doi.org/10.1090/S00029939199512421048
 [AD]
 J. Aczél and J. Dhombres, Functional Equations in Several Variables, Encyclopedia Math. Appl. 31, Cambridge University Press, 1989. MR 90h:39001
 [Amb]
 W. Ambrose, Structure theorems for a special class of Banach algebras, Trans. Amer. Math. Soc. 57 (1945), 364386. MR 7:126c
 [Arn]
 B.H. Arnold, Rings of operators on vector spaces, Ann. of Math. 45 (1944), 2449. MR 5:147c
 [Dra]
 D.D. Draghia, Continuitate in Algebre Banach, Editure didactica si pedagogica, Bucuresti, 1995.
 [Eid]
 M. Eidelheit, On isomorphisms of rings of linear operators, Studia Math. 9 (1940), 97105. MR 3:51e
 [GK]
 I.C. Gohberg and M.G. Krein, Introduction to The Theory of Linear Nonselfadjoint Operators, Translations of Mathematical Monographs Vol. 18, American Mathematical Society, 1969. MR 39:7447
 [HR]
 E. Hewitt and K.A. Ross, Abstract Harmonic Analysis II., SpringerVerlag, 1970. MR 41:7378
 [Kap]
 I. Kaplansky, Ring isomorphisms of Banach algebras, Canad. Math. J. 6 (1954), 374381. MR 16:49e
 [Kuc]
 M. Kuczma, An Introduction to The Theory of Functional Equations and Inequalities, Pa\'{n}stwowe Wydawnictwo Naukowe, Warszawa, 1985. MR 86i:39008
 [Mol1]
 L. Molnár, classes of an H*algebra and their representations, Acta Sci. Math. (Szeged) 58 (1993), 411423. MR 95c:46081
 [Mol2]
 L. Molnár, Algebraic difference between classes of an H*algebra, Proc. Amer. Math. Soc. 124 (1996), 169175. MR 96d:46072
 [Mol3]
 L. Molnár, The range of a ring homomorphism from a commutative algebra, Proc. Amer. Math. Soc. 124 (1996), 17891794. MR 96h:46090
 [New]
 J.D. Newburgh, The variation of spectra, Duke Math. J. 18 (1951), 165176. MR 14:481b
 [SF]
 P.P. Saworotnow and J.C. Friedell, Traceclass for an arbitrary H*algebra, Proc. Amer. Math. Soc. 26 (1970), 95100. MR 42:2304
 [SG]
 P.P. Saworotnow and G.R. Giellis, Continuity and linearity of centralizers on a complemented algebra, Proc. Amer. Math. Soc. 31 (1972), 142146. MR 44:5781
 [Sem]
 P. \v{S}emrl, Isomorphisms of standard operator algebras, Proc. Amer. Math. Soc. 123 (1995), 18511855. MR 95g:47066
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (1991):
46K15,
47D50,
47B49,
43A15,
43A22
Retrieve articles in all journals
with MSC (1991):
46K15,
47D50,
47B49,
43A15,
43A22
Additional Information
Lajos Molnár
Affiliation:
Institute of Mathematics, Lajos Kossuth University, 4010 Debrecen, P. O. Box 12, Hungary
Email:
molnarl@math.klte.hu
DOI:
http://dx.doi.org/10.1090/S0002993999049746
PII:
S 00029939(99)049746
Keywords:
Ring homomorphism,
$H^{*}$algebra,
$p$class,
compact group,
group algebra,
automatic surjectivity
Received by editor(s):
March 4, 1997
Received by editor(s) in revised form:
March 10, 1998
Published electronically:
June 30, 1999
Additional Notes:
This paper was completed when the author, holding a Hungarian State Eötvös Scholarship, was a visitor at the University of Maribor, Slovenia. This research was supported also by the Hungarian National Foundation for Scientific Research (OTKA), Grant No. T–016846 F–019322.
Communicated by:
Palle E. T. Jorgensen
Article copyright:
© Copyright 1999
American Mathematical Society
