Integrability of superharmonic functions

in a John domain

Author:
Hiroaki Aikawa

Journal:
Proc. Amer. Math. Soc. **128** (2000), 195-201

MSC (1991):
Primary 31B05

DOI:
https://doi.org/10.1090/S0002-9939-99-04991-6

Published electronically:
May 27, 1999

MathSciNet review:
1622765

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The integrability of positive superharmonic functions on a bounded fat John domain is established. No exterior conditions are assumed. For a general bounded John domain the -integrability is proved with the estimate of in terms of the John constant.

**[1]**H. Aikawa,*Integrability of superharmonic functions and subharmonic functions*, Proc. Amer. Math. Soc.**120**(1994), 109-117. MR**94b:31003****[2]**H. Aikawa,*Norm estimate of Green operator, perturbation of Green function and integrability of superharmonic functions*, Math. Ann.**312**(1998), 289-318. CMP**99:08****[3]**H. Aikawa,*Norm estimate for the Green operator with applications*, Proceedings of Complex Analysis and Differential Equations, Marcus Wallenberg Symposium in honor of Matts Essén, Uppsala University (1997) (to appear).**[4]**H. Aikawa and M. Murata,*Generalized Cranston-McConnell inequalities and Martin boundaries of unbounded domains*, J. Analyse Math.**69**(1996), 137-152. MR**98f:31016****[5]**D. H. Armitage,*On the global integrability of superharmonic functions in balls*, J. London Math. Soc. (2)**4**(1971), 365-373.**[6]**D. H. Armitage,*Further result on the global integrability of superharmonic functions*, J. London Math. Soc. (2)**6**(1972), 109-121. MR**42:2078****[7]**F. W. Gehring and O. Martio,*Lipschitz classes and quasiconformally homogeneous domains*, Ann. Acad. Sci. Fenn.**10**(1985), 203-219. MR**87b:30029****[8]**Y. Gotoh,*Integrability of superharmonic functions, uniform domains, and Hölder domains*, Proc. Amer. Math. Soc. (to appear). CMP**98:03****[9]**B. Gustafsson, M. Sakai and H. S. Shapiro,*On domains in which harmonic functions satisfy generalized mean value properties*, Potential Analysis**7**(1997), 467-484. CMP**97:16****[10]**P. Lindqvist,*Global integrability and degenerate quasilinear elliptic equations*, J. Analyse Math.**61**(1993), 283-292. MR**95b:35062****[11]**F.-Y. Maeda and N. Suzuki,*The integrability of superharmonic functions on Lipschitz domains*, Bull. London Math. Soc.**21**(1989), 270-278. MR**90b:31004****[12]**M. Masumoto,*A distortion theorem for conformal mappings with an application to subharmonic functions*, Hiroshima Math. J.**20**(1990), 341-350. MR**91h:30031****[13]**M. Masumoto,*Integrability of superharmonic functions on plane domains*, J. London Math. Soc. (2)**45**(1992), 62-78. MR**93f:31002****[14]**W. Smith and D. A. Stegenga,*Hölder domains and Poincaré domains*, Trans. Amer. Math. Soc.**319**(1990), 67-100. MR**90i:30012****[15]**W. Smith and D. A. Stegenga,*Exponential integrability of the quasi-hyperbolic metric on Hölder domains*, Ann. Acad. Sci. Fenn.**16**(1991), 345-360. MR**93b:30016****[16]**D. A. Stegenga and D. C. Ullrich,*Superharmonic functions in Hölder domains*, Rocky Mountain J. Math.**25**(1995), 1539-1556. MR**97j:31003****[17]**W. P. Ziemer,*Weakly Differentiable Functions*, Springer-Verlag, 1989. MR**91e:46046**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
31B05

Retrieve articles in all journals with MSC (1991): 31B05

Additional Information

**Hiroaki Aikawa**

Affiliation:
Department of Mathematics, Shimane University, Matsue 690-8504, Japan

Email:
haikawa@math.shimane-u.ac.jp

DOI:
https://doi.org/10.1090/S0002-9939-99-04991-6

Received by editor(s):
March 17, 1998

Published electronically:
May 27, 1999

Additional Notes:
This work was supported in part by Grant-in-Aid for Scientific Research (B) (No. 09440062), Japanese Ministry of Education, Science and Culture.

Communicated by:
Albert Baernstein II

Article copyright:
© Copyright 1999
American Mathematical Society