Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Bounds on embedded singular spectrum
for one-dimensional Schrödinger operators


Author: Christian Remling
Journal: Proc. Amer. Math. Soc. 128 (2000), 161-171
MSC (1991): Primary 34L40, 81Q10
Published electronically: June 24, 1999
MathSciNet review: 1637420
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the solutions of the one-dimensional Schrödinger equation $-y''+Vy=Ey$ with potential $V(x)=O(x^{-\alpha})$ satisfy the WKB asymptotic formulae off a set of energies $E$ of Hausdorff dimension $\le 2(1-\alpha)$. This result gives restrictions on the structure of possible embedded singular spectrum. The proof relies on new norm estimates for the integral transform associated with the WKB method.


References [Enhancements On Off] (What's this?)

  • 1. M. Christ and A. Kiselev, Absolutely continuous spectrum for one-dimensional Schrödinger operators with slowly decaying potentials: Some optimal results, to appear in J. Amer. Math. Soc. CMP 98:12
  • 2. M. Christ, A. Kiselev, and C. Remling, The absolutely continuous spectrum of one-dimensional Schrödinger operators with decaying potentials, Math.Research Letters 4 (1997), 719-723. CMP 98:05
  • 3. R. del Rio, S. Jitomirskaya, Y. Last, and B. Simon, Operators with singular continuous spectrum. IV. Hausdorff dimensions, rank one perturbations, and localization, J. Anal. Math. 69 (1996), 153–200. MR 1428099, 10.1007/BF02787106
  • 4. François Delyon, Barry Simon, and Bernard Souillard, From power pure point to continuous spectrum in disordered systems, Ann. Inst. H. Poincaré Phys. Théor. 42 (1985), no. 3, 283–309 (English, with French summary). MR 797277
  • 5. M. S. P. Eastham, The asymptotic solution of linear differential systems, London Mathematical Society Monographs. New Series, vol. 4, The Clarendon Press, Oxford University Press, New York, 1989. Applications of the Levinson theorem; Oxford Science Publications. MR 1006434
  • 6. K. J. Falconer, The geometry of fractal sets, Cambridge Tracts in Mathematics, vol. 85, Cambridge University Press, Cambridge, 1986. MR 867284
  • 7. A. Kiselev, Preservation of the absolutely continuous spectrum of Schrödinger equations under perturbations by slowly decreasing potentials and a.e. convergence of integral operators, Duke Math. J. 94 (1998), 619-646. CMP 98:17
  • 8. A. Kiselev, Interpolation theorem related to a.e. convergence of integral operators, to appear in Proc. Amer. Math. Soc.
  • 9. Yoram Last, Quantum dynamics and decompositions of singular continuous spectra, J. Funct. Anal. 142 (1996), no. 2, 406–445. MR 1423040, 10.1006/jfan.1996.0155
  • 10. S. N. Naboko, On the dense point spectrum of Schrödinger and Dirac operators, Teoret. Mat. Fiz. 68 (1986), no. 1, 18–28 (Russian, with English summary). MR 875178
  • 11. Michael Reed and Barry Simon, Methods of modern mathematical physics. III, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1979. Scattering theory. MR 529429
  • 12. C. Remling, The absolutely continuous spectrum of one-dimensional Schrödinger operators with decaying potentials, Commun. Math. Phys. 193 (1998), 151-170. CMP 98:11
  • 13. C. Remling, Embedded singular continuous spectrum for one-dimensional Schrödinger operators, to appear in Trans. Amer. Math. Soc.
  • 14. Barry Simon, Some Jacobi matrices with decaying potential and dense point spectrum, Comm. Math. Phys. 87 (1982/83), no. 2, 253–258. MR 684102
  • 15. Barry Simon, Some Schrödinger operators with dense point spectrum, Proc. Amer. Math. Soc. 125 (1997), no. 1, 203–208. MR 1346989, 10.1090/S0002-9939-97-03559-4
  • 16. Günter Stolz, Bounded solutions and absolute continuity of Sturm-Liouville operators, J. Math. Anal. Appl. 169 (1992), no. 1, 210–228. MR 1180682, 10.1016/0022-247X(92)90112-Q
  • 17. Robert S. Strichartz, Fourier asymptotics of fractal measures, J. Funct. Anal. 89 (1990), no. 1, 154–187. MR 1040961, 10.1016/0022-1236(90)90009-A
  • 18. J. von Neumann and E. Wigner, Über merkwürdige diskrete Eigenwerte, Z. Phys. 30 (1929), 465-467.
  • 19. Joachim Weidmann, Spectral theory of ordinary differential operators, Lecture Notes in Mathematics, vol. 1258, Springer-Verlag, Berlin, 1987. MR 923320
  • 20. A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 34L40, 81Q10

Retrieve articles in all journals with MSC (1991): 34L40, 81Q10


Additional Information

Christian Remling
Affiliation: Universität Osnabrück, Fachbereich Mathematik/Informatik, 49069 Osnabrück, Germany
Email: cremling@mathematik.uni-osnabrueck.de

DOI: https://doi.org/10.1090/S0002-9939-99-05110-2
Received by editor(s): March 10, 1998
Published electronically: June 24, 1999
Communicated by: Christopher D. Sogge
Article copyright: © Copyright 1999 American Mathematical Society