Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

An extension of a non-commutative
Choquet-Deny theorem


Author: G. A. Willis
Journal: Proc. Amer. Math. Soc. 128 (2000), 111-118
MSC (1991): Primary 43A20; Secondary 22D40
DOI: https://doi.org/10.1090/S0002-9939-99-05117-5
Published electronically: March 3, 1999
MathSciNet review: 1637448
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $G$ be a discrete group, and let $N$ be a normal subgroup of $G$. Then the quotient map $G\to G/N$ induces a group algebra homomorphism $T_N:\ell^1(G)\to \ell^1(G/N)$. It is shown that the kernel of this map may be decomposed as $\ker(T_N)=R+L$, where $R$ is a closed right ideal with a bounded left approximate identity and $L$ is a closed left ideal with a bounded right approximate identity. It follows from this fact that, if $I$ is a closed two-sided ideal in $\ell^1(G)$, then $T_N(I)$ is closed in $\ell^1(G/N)$. This answers a question of Reiter.


References [Enhancements On Off] (What's this?)

  • [B-D] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer-Verlag, Berlin, Heidelberg, New York, 1973. MR 54:11013
  • [C-D] G. Choquet and J. Deny, Sur l'équation de convolution $\mu=\mu*\sigma$, C. R. Acad. Sci. Paris Sér. Paris I Math. 250 (1960), 799-801. MR 22:9808
  • [D-S] N. Dunford and J. T. Schwartz, Linear Operators. Part I, Interscience, New York, 1957. MR 90g:47001a
  • [F] H. Furstenberg, A Poisson formula for semi-simple Lie groups, Ann. of Math. 77 (1963), 335-386. MR 26:3820
  • [H-R] E. Hewitt and K. A. Ross, Abstract harmonic analysis. I, Springer-Verlag, Berlin, Heidelberg, New York, 1963. MR 28:158
  • [J] B. E. Johnson, Some examples in harmonic analysis, Studia Math. 48 (1973), 181-188. MR 49:3456
  • [K] V. A. Kaimanovich, Bi-harmonic functions on groups, C. R. Acad. Sci. Paris Sér. I Math. 314 (1992), 259-264. MR 93e:60160
  • [M-Z] D. Montgomery and L. Zippin, Topological transformation groups, Interscience, New York, 1955. MR 17:383b
  • [Re1] H. Reiter, Classical harmonic analysis, Oxford University Press.
  • [Re2] H. Reiter, Sur certains idéaux dans $L^1(G)$, C. R. Acad. Sci. Paris Sér. A-B 267 (1968), A882-A885. MR 39:6025
  • [Ri] H. Rindler, Über ein Problem von Reiter und ein Problem von Derighetti zur Eigenschaft $P_1$ lokalkompakter Gruppen, Comment. Math. Helv. 48 (1973), 492-497. MR 49:1008
  • [Ru] W. Rudin, Spaces of type $H^\infty+C$, Ann. Inst. Fourier (Grenoble) 25, No. 1 (1975), 99-125. MR 57:7134; MR 51:13692
  • [W1] G. A. Willis, Probability measures on groups and some related ideals in group algebras, J. Funct. Analysis 92 (1990), 202-263. MR 91i:43003
  • [W2] G. A. Willis, The structure of totally disconnected, locally compact groups, Math. Ann. 300 (1994), 341-363. MR 95j:22010
  • [W3] G. A. Willis, Factorization in codimension two ideals of group algebras, Proc. Amer. Math. Soc. 89 (1983), 95-100. MR 85c:43005
  • [W4] G. A. Willis, The continuity of derivations from group algebras: factorizable and connected groups, J. Austral. Math. Soc. 52 (1992), 185-204. MR 93b:46096
  • [W5] G. A. Willis, Translation invariant functionals on $L^p(G)$ when $G$ is not amenable, J. Austral. Math. Soc. 41 (1986), 237-250. MR 88b:43002

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 43A20, 22D40

Retrieve articles in all journals with MSC (1991): 43A20, 22D40


Additional Information

G. A. Willis
Affiliation: Department of Mathematics, The University of Newcastle, New South Wales, Australia, 2308
Email: george@frey.newcastle.edu.au

DOI: https://doi.org/10.1090/S0002-9939-99-05117-5
Received by editor(s): June 24, 1995
Received by editor(s) in revised form: September 5, 1995, and March 10, 1998
Published electronically: March 3, 1999
Communicated by: Palle E. T. Jorgensen
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society