Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A local approach to functionals on $L^{\infty }(\mu ,X)$


Author: Santiago Díaz
Journal: Proc. Amer. Math. Soc. 128 (2000), 101-109
MSC (1991): Primary 46E40
DOI: https://doi.org/10.1090/S0002-9939-99-05284-3
Published electronically: June 21, 1999
MathSciNet review: 1657715
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $(\Omega ,\Sigma ,\mu )$ be a probability space and $X$ a Banach space. We show that the dual of $L^{\infty }(\mu ,X)$ can be ``locally'' identified with $L^{1}(\mu ,X^{*}).$


References [Enhancements On Off] (What's this?)

  • [CV] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lect. Notes in Math. n. 580, Springer-Verlag, New York, Berlin, Heidelberg (1977). MR 57:7169
  • [CM] P. Cembranos and J. Mendoza, Banach Spaces of Vector-Valued Functions, Lect. Notes in Math. n. 1676, Springer, Berlin, Heidelberg, New York (1997). CMP 98:06
  • [D] S. Díaz, Complemented copies of $\ell _{1}$ in $L^{\infty }(\mu ,X)$, Rocky Mountain Journal 27 (1997), 779-784. MR 99a:46065
  • [Di] J. Diestel, Sequences and Series in Banach Spaces, Grad. Texts in Math. n. 92, Springer-Verlag, New York, Berlin, Heidelberg (1984). MR 85i:46020
  • [DJT] J. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Camb. Studies in Adv. Math. n. 43, Cambridge University Press, Cambridge (1995). MR 96i:46001
  • [DU] J. Diestel and J.J. Uhl, Vector Measures, Math. Surveys n. 15, American Mathematical Society, Providence, RI (1977). MR 56:12216
  • [H] S. Heinrich, Ultraproducts in Banach space theory, J. Reine Angew. Math., 313 (1980), 72-104. MR 82b:46013

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 46E40

Retrieve articles in all journals with MSC (1991): 46E40


Additional Information

Santiago Díaz
Affiliation: Departamento de Matemática Aplicada II, Escuela Superior de Ingenieros, Universidad de Sevilla, Camino de los Descubrimientos 41092, Sevilla, Spain
Email: madrigal@cica.es

DOI: https://doi.org/10.1090/S0002-9939-99-05284-3
Keywords: Integrable functions, local reflexivity
Received by editor(s): March 6, 1998
Published electronically: June 21, 1999
Additional Notes: This research has been partially supported by the DGICYT project n. PB97-0706 and by La Consejería de Educación y Ciencia de la Junta de Andalucía.
Communicated by: Dale Alspach
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society