Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Optimal size estimates for the inverse conductivity problem with one measurement


Authors: G. Alessandrini, E. Rosset and J. K. Seo
Journal: Proc. Amer. Math. Soc. 128 (2000), 53-64
MSC (2000): Primary 31B20; Secondary 35R25, 35R30, 35R05
DOI: https://doi.org/10.1090/S0002-9939-99-05474-X
Published electronically: September 9, 1999
MathSciNet review: 1695112
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove upper and lower estimates on the measure of an inclusion $D$ in a conductor $\Omega $ in terms of one pair of current and potential boundary measurements. The growth rates of such estimates are essentially best possible.


References [Enhancements On Off] (What's this?)

  • [Ad] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975. MR 56:9247
  • [AI] G. Alessandrini and V. Isakov, Analyticity and uniqueness for the inverse conductivity problem, Rend. Ist. Mat. Univ. Trieste 28 (I/II) (1996), 351-370. MR 98g:35218
  • [AIP] G. Alessandrini, V. Isakov, and J. Powell, Local uniqueness in the inverse conductivity problem with one measurement, Trans. Amer. Math. Soc. 347 (1995), 3031-3041. MR 95m:35197
  • [Al] G. Alessandrini, Remark on a paper by Bellout and Friedman,, Boll. Un. Mat. Ital. A 23 (1989), 243-249. MR 90g:31005
  • [AR] G. Alessandrini and E. Rosset, The inverse conductivity problem with one measurement: bounds on the size of the unknown object, SIAM J. Appl. Math. 58, 4 (1998), 1060-1071. CMP 98:12
  • [BF] H. Bellout and A. Friedman, Identification problems in potential theory, Arch. Rational Mech. Anal. 101 (1988), 143-160. MR 90g:31005
  • [BFI] H. Bellout, A. Friedman, and V. Isakov, Stability for an inverse problem in potential theory, Trans. Amer. Math. Soc. 332 (1992), 271-296. MR 92j:31010
  • [BFS] B. Barceló, E. Fabes, and J. K. Seo, The inverse conductivity problem with one measurement: uniqueness for convex polyhedra, Proc. Amer. Math. Soc. 122 (1994), 183-189. MR 94k:35320
  • [Br] K. Bryan, Single measurement detection of a discontinuous conductivity, Comm. Partial Differential Equations 15 (1990), 503-514. MR 91e:78015
  • [C] V. G. Cherednichenko, A problem in the conjugation of harmonic functions and its inverse, Differential Equations 18 (1982), 682-689, 734. MR 83h:31002
  • [F] A. Friedman, Detection of mines by electric measurements, SIAM J. Appl. Math. 47 (1987), 201-212. MR 88c:35149
  • [FI] A. Friedman and V. Isakov, On the uniqueness in the inverse conductivity problem with one measurement, Indiana Univ. Math. J. 38 (1989), 563-579. MR 91a:35164
  • [GL] N. Garofalo and F. Lin, Monotonicity properties of variational integrals, $A_{p}$ weights and unique continuation, Indiana Univ. Math. J. 35 (1986), 245-268. MR 88b:35059
  • [Gr] P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics 24, Pitman, Boston, 1985. MR 86m:35044
  • [IP] V. Isakov and J. Powell, On the inverse conductivity problem with one measurement, Inverse Problems 6 (1990), 311-318. MR 91e:35212a; corrigendum MR 91e:35212b
  • [K] C. E. Kenig, Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems, American Mathematical Society, Providence R. I., 1994. MR 96a:35040
  • [KP] C. E. Kenig and J. Pipher, The Neumann problem for elliptic equations with non-smooth coefficients, Invent. Math. 113 (1993), 447-509. MR 95b:35046
  • [KSS] H. Kang, J. K. Seo, and D. Sheen, The inverse conductivity problem with one measurement: stability and estimation of size, SIAM J. Math. Anal. 28 (1997), 1389-1405. MR 98k:86021
  • [LM] J. L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications I, Springer-Verlag, Berlin, 1972. MR 50:2670
  • [P] J. Powell, On a small perturbation in the two dimensional inverse conductivity problem, J. Math. Anal. Appl. 175 (1993), 292-304. MR 94c:35169
  • [S] J. K. Seo, A uniqueness result on inverse conductivity problem with two measurements, J. Fourier Anal. Appl. 2 (1996), 227-235. MR 97b:35196

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 31B20, 35R25, 35R30, 35R05

Retrieve articles in all journals with MSC (2000): 31B20, 35R25, 35R30, 35R05


Additional Information

G. Alessandrini
Affiliation: Dipartimento di Scienze Matematiche, Università Degli Studi di Trieste, 34100 Trieste, Italy
Email: alessang@univ.trieste.it

E. Rosset
Email: rossedi@univ.trieste.it

J. K. Seo
Affiliation: Department of Mathematics, Yonsey University, Seoul 120-749, Korea
Email: seoj@bubble.yonsei.ac.kr

DOI: https://doi.org/10.1090/S0002-9939-99-05474-X
Keywords: Inverse conductivity problem, size estimates, Muckenhoupt weights
Received by editor(s): February 11, 1998
Published electronically: September 9, 1999
Additional Notes: This research was supported in part by Fondi MURST 40% and 60% and by CNR
Communicated by: Lesley M. Sibner
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society