EVERY \((\lambda^+, \kappa^+)\)-REGULAR ULTRAFILTER IS \((\lambda, \kappa)\)-REGULAR

PAOLO LIPPARINI

(Communicated by Carl G. Jockusch, Jr.)

Abstract. We prove the following:

Theorem A. If \(D\) is a \((\lambda^+, \kappa^+)\)-regular ultrafilter, then either
(a) \(D\) is \((\lambda, \kappa)\)-regular, or
(b) the cofinality of the linear order \(\prod D \langle \lambda, < \rangle\) is \(\text{cf} \kappa\), and \(D\) is \((\lambda, \kappa')\)-regular
for all \(\kappa' < \kappa\).

Corollary B. Suppose that
(\(\kappa\) is singular, \(\kappa > \lambda\) and either \(\lambda\) is regular, or \(\text{cf} \kappa < \text{cf} \lambda\). Then every \((\lambda^{+n}, \kappa)\)-regular ultrafilter is \((\lambda, \kappa)\)-regular.

We also discuss some consequences and variations.

The notion of a \((\lambda, \kappa)\)-regular ultrafilter has been introduced by J. Keisler in [Kei]. An ultrafilter \(D\) is \((\lambda, \kappa)\)-regular iff there is a family of \(\kappa\) members of \(D\) such that the intersection of any \(\lambda\) members of the family is empty.

In [Kei] Keisler proved some cardinality results about ultraproducts taken modulo such ultrafilters. Further results were proved in the 70’s: for example, the following are theorems of ZFC:

(a) Every \((\lambda^+, \lambda^+)\)-regular ultrafilter is \((\lambda, \lambda)\)-regular ([CC], [KP]).
(b) If \(\lambda\) is singular, then every \((\lambda^+, \lambda^+)\)-regular ultrafilter is \((\lambda, \lambda^+)\)-regular [Ka]; moreover, it is either \((\text{cf} \lambda, \text{cf} \lambda)\)-regular or \((\lambda', \lambda^+)\)-regular for some \(\lambda' < \lambda\) ([CC], [KP]).
(c) If
\(2^{\kappa} = \kappa^+\) and \(2^{\kappa^+} > \kappa^{++}\), then every \((\kappa^+, \kappa^+)\)-regular ultrafilter is \((\kappa, \kappa^+)\)-regular ([BK], [Ket]).

It was soon realized, however, that \((\text{ir})\)regular ultrafilters are connected with large cardinals, inner models, and combinatorial or reflection principles; this paved the way for significant applications to set theory, but seemed to dash any hope that other results besides (a)–(c) above can be proved in ZFC alone (see e.g. [KM] or [Lp1] for further references).

However, in [Lp1] (more than twenty years later) we proved some slight improvements of (b), as well as a “down from exponents” transfer result for \((\lambda, \lambda)\)-regularity; we also suggested the possibility that further results are theorems of ZFC. It is actually so; in this paper we prove the following generalization of (a):

Theorem 1. If \(n < \omega\), then every \((\lambda^{+n}, \kappa^{+n})\)-regular ultrafilter is \((\lambda, \kappa)\)-regular.
Theorem 1 solves a problem raised in [Lp1]. Actually, (the proof of) Theorem 1 has some further consequences:

Corollary 1. Suppose that \(\lambda \leq \kappa \), \(\lambda \) is a regular cardinal, and \(D \) is a \((\lambda^+, \kappa)\)-regular ultrafilter. Then the following are equivalent:

(i) \(D \) is \((\lambda, \kappa)\)-regular;
(ii) the cofinality of \(\prod_D \langle \lambda, < \rangle \) is \(\kappa \);
(iii) the cofinality of \(\prod_D \langle \lambda, < \rangle \) is different from \(\text{cf} \kappa \).

Corollary 2 ([Lp1]). Suppose that \(\text{cf} \lambda \neq \text{cf} \kappa \). If \(D \) is \((\lambda^+, \kappa)\)-regular and not \((\text{cf} \lambda, \text{cf} \lambda)\)-regular, then \(D \) is \((\lambda, \kappa)\)-regular.

Corollary 3. If \(D \) is \((\lambda^+, \kappa)\)-regular and \((\text{cf} \lambda, \text{cf} \kappa)\)-regular, then \(D \) is \((\lambda, \kappa)\)-regular.

Corollary 4. Suppose that \(D \) is \((\lambda^+, \kappa)\)-regular and \((\lambda^+, \kappa')\)-regular. If \(\text{cf} \lambda = \text{cf} \lambda' \) and \(\text{cf} \kappa \neq \text{cf} \kappa' \), then \(D \) is either \((\lambda, \kappa)\)-regular or \((\lambda', \kappa')\)-regular.

The following improves [BK, Theorem 1.3 and Corollaries 1.8 and 2.5]:

Proposition. Suppose that \(D \) is a \((\lambda^+, \kappa)\)-regular ultrafilter, and that the cofinality of the linear order \(\prod_D \langle \lambda, < \rangle \) is different from \(\text{cf} \kappa \). Then \(D \) is \((\lambda, \kappa)\)-regular.

Notice that, trivially, the cofinality of \(\prod_D \langle \lambda, < \rangle \) equals the cofinality of \(\prod_D \langle \text{cf} \lambda, < \rangle \).

In order to discuss some further results, let us introduce some notation and definitions (see [CK] for basics about models and ultrafilters).

\(S_\mu(X) \) denotes the set of all subsets of \(X \) of cardinality \(< \mu \). If \(X \) is a well-ordered set and \(\alpha \) is an ordinal, \(S_\alpha(X) \) is the set of all subsets of \(X \) which have order type \(< \alpha \) (notice that the two definitions are consistent).

Throughout this paper, we shall use the following reformulation of \((\lambda, \kappa)\)-regularity. As Benda and Ketonen [BK] noticed, it makes sense even when \(\lambda \) is allowed to be an ordinal: the next corollary deals with such a situation. See [Lp1] for further comments.

An ultrafilter \(D \) is \((\beta, \kappa)\)-regular iff in the ultrapower \(\prod_D \langle S_\beta(\kappa), \subseteq, \{ \alpha \} \rangle \) there is an element \(x \) such that \(\{ \alpha \} \subseteq x \), for every \(\alpha \in \kappa \) (equivalently, for \(\kappa \)-many \(\alpha \)-s).

Corollary 5. Let \(D \) be an ultrafilter, and let \(\kappa \) be a cardinal. Let \(\gamma \) be the least ordinal such that \(D \) is \((\gamma, \kappa)\)-regular. Then either:

(i) \(\gamma \) is a limit ordinal and \(D \) is \((\text{cf} \gamma, \text{cf} \gamma)\)-regular, or
(ii) \(\gamma = \delta + 1 \), \(\delta \) is a limit ordinal and the cofinality of \(\prod_D \langle \delta, < \rangle \) is \(\text{cf} \kappa \). Hence either \(D \) is \((\text{cf} \delta, \text{cf} \delta)\)-regular and \(\text{cf} \kappa > \text{cf} \delta \), or \(\text{cf} \kappa = \text{cf} \delta \) and \(D \) is not \((\text{cf} \delta, \text{cf} \delta)\)-regular.

Theorem 2. There is a finite expansion \(A^+ \) of the model \(\langle S_{\lambda+n}(\mu+n), V, \subseteq, \{ \alpha \} \rangle_{\alpha \in \mu+n} \) (where \(V(a) \iff a \in S_\lambda(\mu) \)) such that whenever \(B \equiv A^+ \) and there is \(b \in B \) such that \(|\{ \alpha \in \mu+n \mid B \models \{ \alpha \} \subseteq b \}| = \mu+n \), then there is \(b' \in B \) such that \(V(b') \) and \(|\{ \alpha \in \mu \mid B \models \{ \alpha \} \subseteq b' \}| = \mu \).

The statement of Theorem 2 reads \(\text{alm}(\lambda+n, \mu+n) \Rightarrow \text{alm}(\lambda, \mu) \), in the notation of [Lp2]. There we also discuss the interest of such results. Notice that, in view of the reformulation of \((\lambda, \mu)\)-regularity we have given, Theorem 2 is stronger than Theorem 1.
Finally, let us mention that \((\lambda, \kappa)-regular\) ultrafilters have found other applications both in general topology and in the model theory for abstract logics (see [\text{Lp1}, \text{Lp2}] for further references).

A notice to the reader wanting to consult the literature on regular ultrafilters: results like (a)–(c) above are sometimes stated in equivalent forms in terms of the closely related notions of \(\lambda\)-decomposability, \(\lambda\)-descending incompleteness and uniformity. We shall not need those notions in the present paper, but, for the convenience of the reader, we give below a "table of correspondence".

For every cardinal \(\lambda\) and every ultrafilter \(D\), the following hold:

(i) \(D\) is \(\lambda\)-descendingly incomplete iff it is \((\text{cf}\, \lambda, \text{cf}\, \lambda)\)-regular.
(ii) If \(D\) is \(\lambda\)-decomposable, then \(D\) is \((\text{cf}\, \lambda, \text{cf}\, \lambda)\)-regular.
(iii) If \(D\) is \((\text{cf}\, \lambda, \text{cf}\, \lambda)\)-regular, then \(D\) is \((\lambda, \lambda)\)-regular.
(iv) \(D\) is \(\lambda\)-decomposable iff there is a \(D'\) uniform on \(\lambda\) and \(D' \leq D\) in the Rudin Keisler (pre)-order.

Moreover, if \(\lambda\) is regular, then,

(v) if \(D\) is \((\lambda, \lambda)\)-regular, then \(D\) is \(\lambda\)-decomposable.

By the above statements, for \(\lambda\) a regular cardinal, the notions of \((\lambda, \lambda)\)-regularity, \(\lambda\)-descending incompleteness and \(\lambda\)-decomposability are all equivalent. In particular, the notion of \((\lambda, \kappa)\)-regularity encompasses all the above notions, except for \(\lambda\)-decomposability when \(\lambda\) is singular.

Moreover, it is trivial that if \(D' \leq D\) in the Rudin Keisler order, and \(D'\) is \((\lambda, \kappa)\)-regular, then \(D\) is \((\lambda, \kappa)\)-regular, also.

These facts make it possible, for example, to reformulate (a) together with the second statement in (b) as: every uniform ultrafilter over \(\lambda^+\) is either \(\lambda\)-descendingly incomplete or \((\lambda', \lambda^+)\)-regular for some \(\lambda' < \lambda\).

We now prove the stated results. The statement in the title of the paper is a consequence of Theorem A in the abstract (when \(\kappa\) is a successor cardinal). Theorem 1 follows now from a simple induction. Corollary 4 is immediate from the proposition.

Proof of the Proposition. For every \(x \in S_{\lambda^+}(\kappa)\), let \(G(x, \beta) (\beta < \lambda)\) be a sequence of subsets of \(x\) such that:

(i) if \(\beta \leq \beta' < \lambda\), then \(G(x, \beta) \subseteq G(x, \beta')\);
(ii) \(|G(x, \beta)| \leq |\beta|\), for every \(\beta < \lambda\);
(iii) \(\bigcup_{\beta < \lambda} G(x, \beta) = x\).

Consider the model \(A = \langle S_{\lambda^+}(\kappa), \subseteq, U, <, G, \{\alpha\}_{\alpha \in \kappa} \rangle\), where \(\langle U, < \rangle = \langle \lambda, < \rangle\) and \(G\) is the above function from \(A \times U\) to \(A\).

Thus, by (iii) above, for every \(\alpha \in \kappa\), \(A\) satisfies

\[\forall x (\{\alpha\} \subseteq x \Rightarrow \exists w (U(w) \wedge \{\alpha\} \subseteq G(x, w))).\]

Let \(D\) be a \((\lambda^+, \kappa)\)-regular ultrafilter; let us work in \(B = \prod_D A\); and let \(y\) witness the \((\lambda^+, \kappa)\)-regularity of \(D\). By (\(\ast\)), and since \(y\) witnesses that \(D\) is \((\lambda^+, \kappa)\)-regular, for every \(\alpha \in \kappa\), there is a \(w_\alpha\) in \(B\) such that, in \(B\), \(\{\alpha\} \subseteq G(y, w_\alpha)\).

For every \(w \in B\), let \(X_w = \{\alpha \mid B \models \{\alpha\} \subseteq G(y, w)\}\). Notice that:

(I) The union of all the \(X_w\)'s \((w \in B\rangle\) is \(\kappa\), by the above argument.
(II) If \(w \leq w' \in B\), then \(X_w \subseteq X_{w'}\), because of clause (i) (and elementarity).
It is enough to show that there is \(w \in B \mid U \) such that \(|X_w| = \kappa \). If this happens, then \(G(y, w) \) witnesses the \((\mu, \kappa)\)-regularity of \(D \) (because of (ii)), \(G(y, w) \) is in \(\prod_D S_\lambda(\kappa) \).

Suppose by contradiction that

\[(\text{III}) \ |X_w| < \kappa, \text{ for all } w \in B \mid U.\]

Easy cofinality arguments then show that (I)–(III) imply that \(\text{cf}(B \mid U, <) = \kappa \), contradicting the hypothesis.

Proof of Theorem A. If (a) fails, then the proposition implies that \(\text{cf} \prod_D (\lambda, <) \) is \(\kappa \).

If \(\kappa' < \kappa \), then \(D \) is trivially \((\lambda^+, \kappa')\)-regular. If \(\kappa' \neq \kappa \), then the proposition (applied to \((\lambda^+, \kappa')\)-regularity) implies that \(D \) is \((\lambda, \kappa')\)-regular.

But this is enough, since for every \(\kappa'' < \kappa \) there is \(\kappa' \) such that \(\kappa' \neq \kappa \) and \(\kappa'' < \kappa \).

Proof of Corollary 1. (i)\(\Rightarrow \) (ii) is standard (e.g. [BK, p. 233]).

(ii)\(\Rightarrow \) (iii) is trivial.

(iii)\(\Rightarrow \) (i) is immediate from the proposition.

Remark. The hypothesis \(\lambda \) regular is necessary in Corollary 1. If \(\mu \) is strongly compact, then there exists a \(\mu \)-complete \((\mu, \mu^{+\omega+\omega})\)-regular ultrafilter \(D \). If we take \(\lambda = \mu^{+\omega} \) and \(\kappa = \mu^{+\omega+\omega} \), then condition (i) holds, but (ii) and (iii) fail.

We wonder whether some generalization of Corollary 1 is possible when \(\lambda \) is singular.

Notice that Corollary 1 and Theorem A imply that if \(\lambda \) is regular, and \(D \) is \((\lambda^+, \kappa)\)-regular, then \(\text{cf} \prod_D (\lambda, <) \geq \kappa \).

Proof of Corollary B. An induction on \(n \) shows that it is enough to prove the particular case when \(n = 1 \). So assume that \(\kappa \) is singular, \(\kappa > \lambda \) and \(D \) is \((\lambda^+, \kappa)\)-regular.

Case 1: \(\lambda \) is regular. By Theorem A, \(D \) is \((\lambda, \kappa')\)-regular for all \(\kappa' < \kappa \). By, e.g., Corollary 1, the cofinality of \(\prod_D (\lambda, <) \) is \(> \kappa' \), for all \(\kappa' < \kappa \). Since \(\kappa \) is singular, the cofinality of \(\prod_D (\lambda, <) \) must be \(> \kappa \); in particular, it is \(\neq \text{cf} \kappa \). Hence, case (b) in Theorem A cannot occur.

Case 2: \(\text{cf} \kappa < \text{cf} \lambda \). Then case (b) in Theorem A cannot occur, since the cofinality of \(\prod_D (\lambda, <) \) is \(\text{cf} \lambda \) if \(D \) is not \((\text{cf} \lambda, \text{cf} \lambda)\)-regular, and is \(> \text{cf} \lambda \) otherwise. Hence, we are in case (a) and we are done.

Proof of Corollary 2. \(D \) is \((\text{cf} \lambda, \text{cf} \lambda)\)-regular iff the cofinality of \(\prod_D (\text{cf} \lambda, <) \) is different from \(\text{cf} \lambda \) (e.g., by Corollary 1). So it is enough to apply the proposition.

Proof of Corollary 3. If \(\kappa \leq \lambda \), the result is trivial. The case \(\kappa < \text{cf} \lambda \) is covered by Corollary B. Otherwise, by Corollary 1, the cofinality of \(\prod_D (\text{cf} \lambda, <) \) is \(> \kappa \).

Now apply the proposition.

Proof of Theorem 2. It is enough to prove the case \(n = 1 \).

The proofs of the proposition and of Theorem A have been devised to work as a proof for Theorem 2.

Add to the model \(A \) the relations and functions necessary in order to carry over the proof of the proposition in the two cases \(\kappa = \mu^+ \) and \(\kappa = \mu \). Notice that \(U = \lambda \) is the same in both cases.
Let B be as in the statement of Theorem 2. The cofinality of $\langle B|_U, < \rangle$ is different from $\text{cf} \kappa$ for at least one of the choices $\kappa = \mu^+$ and $\kappa = \mu$. Now it is enough to apply the arguments in the proof of the proposition, for the appropriate choice of κ.

Of course, a generalization of Theorem A can be given along the lines of the above proof. We can obtain the separation in cases (a) and (b); we can also obtain that, in case (b), the cofinality of $\langle U, < \rangle$ becomes $\text{cf} \kappa$, in B (but notice that, when κ is singular, we need $\text{cf} \kappa$ symbols in the expansion A^+). Corollaries 2 and 4, too, can be generalized.

We can also generalize Corollaries 1, 3 and B in this fashion, but some technicalities are needed in the proof: we have to add Skolem functions to A^+, and consider the substructure of B generated by b (seemingly, κ^+ symbols are needed in A^+).

Proof of Corollary 5. (i) Let γ be limit. For every $x \in S_\Gamma(\kappa)$ let $F(x)$ be the order type of x. Consider an appropriate expansion of $S_\Gamma(\kappa)$, and take its ultrapower under D. If y witnesses (γ, κ)-regularity, then $\beta < F(y)$, for every $\beta < \gamma$, since, otherwise, D would be $(\beta + 1, \kappa)$-regular. This easily implies that D is $(\text{cf} \gamma, \text{cf} \gamma)$-regular.

Essentially, this is the argument used in [Lp2, Corollary 1.4].

(ii) If $\gamma = \delta + 1$, then it is easy to show that δ is limit.

A variation on the proof of the proposition shows that the cofinality of $\prod_D(\delta, <)$ is $\text{cf} \kappa$. Just consider U to be $\langle \delta, < \rangle$ and for $\beta < \delta$ let $G(x, \beta)$ be the initial subset of x of order type β. Now observe that the case corresponding to (a) in Theorem A cannot occur since γ is the least ordinal for which D is (γ, κ)-regular.

The last remark follows from the fact that the cofinality of $\prod_D(\delta, <)$ is equal to the cofinality of $\prod_D(\text{cf} \delta, <)$.

REFERENCES

Dipartimento di Matematica, Viale della Ricerca Scientifica, II Università di Roma (Tor Vergata), I-00133 Rome, Italy
E-mail address: lipparini@axp.mat.uniroma2.it
E-mail address: lipparini@unica.it