Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Minimally almost periodic
totally disconnected groups


Author: Claudio Nebbia
Journal: Proc. Amer. Math. Soc. 128 (2000), 347-351
MSC (1991): Primary 20E08; Secondary 22D05, 43A60
DOI: https://doi.org/10.1090/S0002-9939-99-05027-3
Published electronically: June 21, 1999
MathSciNet review: 1623040
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we prove that every closed noncompact group $G$ of isometries of a homogeneous tree which acts transitively on the tree boundary contains a normal closed cocompact subgroup $G'$ which is minimally almost periodic. Moreover we prove that $G'$ is a topologically simple group.


References [Enhancements On Off] (What's this?)

  • 1. Jacques Dixmier, Les 𝐶*-algèbres et leurs représentations, Les Grands Classiques Gauthier-Villars. [Gauthier-Villars Great Classics], Éditions Jacques Gabay, Paris, 1996 (French). Reprint of the second (1969) edition. MR 1452364
  • 2. Alessandro Figà-Talamanca and Claudio Nebbia, Harmonic analysis and representation theory for groups acting on homogeneous trees, London Mathematical Society Lecture Note Series, vol. 162, Cambridge University Press, Cambridge, 1991. MR 1152801
  • 3. H. Jacquet and R. P. Langlands, Automorphic forms on 𝐺𝐿(2), Lecture Notes in Mathematics, Vol. 114, Springer-Verlag, Berlin-New York, 1970. MR 0401654
  • 4. Claudio Nebbia, Groups of isometries of a tree and the Kunze-Stein phenomenon, Pacific J. Math. 133 (1988), no. 1, 141–149. MR 936361
  • 5. Claudio Nebbia, Classification of all irreducible unitary representations of the stabilizer of the horicycles [horocycles] of a tree, Israel J. Math. 70 (1990), no. 3, 343–351. MR 1074496, https://doi.org/10.1007/BF02801468
  • 6. G. I. Ol$'$shianskii, Classification of all irreducible representations of groups of automorphisms of Bruhat-Tits trees, Functional Anal. Appl. 11 (1977), 26-34.
  • 7. Jean-Pierre Serre, Arbres, amalgames, 𝑆𝐿₂, Société Mathématique de France, Paris, 1977 (French). Avec un sommaire anglais; Rédigé avec la collaboration de Hyman Bass; Astérisque, No. 46. MR 0476875
  • 8. Jacques Tits, Sur le groupe des automorphismes d’un arbre, Essays on topology and related topics (Mémoires dédiés à Georges de Rham), Springer, New York, 1970, pp. 188–211 (French). MR 0299534

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 20E08, 22D05, 43A60

Retrieve articles in all journals with MSC (1991): 20E08, 22D05, 43A60


Additional Information

Claudio Nebbia
Affiliation: Dipartimento di Matematica “G. Castelnuovo”, Università di Roma “La Sapienza”, 00185 Roma, Italy
Email: nebbia@mercurio.mat.uniroma1.it

DOI: https://doi.org/10.1090/S0002-9939-99-05027-3
Received by editor(s): November 20, 1997
Received by editor(s) in revised form: March 31, 1998
Published electronically: June 21, 1999
Communicated by: Roe Goodman
Article copyright: © Copyright 1999 American Mathematical Society