SOLVING THE p-LAPLACIAN ON MANIFOLDS

MARC TROYANOV
(Communicated by Peter Li)

Abstract. We prove in this paper that the equation $\Delta_p u + h = 0$ on a p-hyperbolic manifold M has a solution with p-integrable gradient for any bounded measurable function $h : M \to \mathbb{R}$ with compact support.

1. Introduction

The p-Laplacian of a function f on a connected oriented Riemannian manifold without boundary M is defined by $\Delta_p f = \text{div}(|\nabla f|^{p-2}\nabla f)$; it is the Euler-Lagrange operator associated with the functional $\int_M |\nabla f|^p$.

A function $u \in W^{1,p}_{\text{loc}}(M)$ is said to be a weak solution to the equation

$\Delta_p u + h = 0 \quad (1)$

if for all $\psi \in C^1_0(M)$ one has

$\int_M \langle |\nabla u|^{p-2}\nabla u, \nabla \psi \rangle = \int_M h \psi.$

We introduce the p-Dirichlet space $L^{1,p}(M)$ of functions $u \in W^{1,p}_{\text{loc}}(M)$ admitting a weak gradient such that $\int_M |\nabla u|^p < \infty$.

In [2], the following result has been proved:

Theorem 1. Suppose that M is p-parabolic, and let $h \in L^1(M)$ be a function such that $\int_M h \neq 0$. Then (1) has no weak solution $u \in L^{1,p}(M)$.

The goal of this paper is to prove the following result in the converse direction.

Theorem 2. Suppose that M is a p-hyperbolic manifold $(1 < p < \infty)$ and that $h \in L^\infty(M)$ has compact support. Then (1) has a weak solution $u \in L^{1,p}(M)$. Moreover u is of class $C^{1,\alpha}$ on each compact set (where $\alpha \in (0,1)$ may depend on the compact set).

The notion of p-hyperbolic and p-parabolic manifolds will be recalled below (see also [6]). As an example, the euclidean space \mathbb{R}^n is p-hyperbolic if and only if $p < n$.

Remark. If $M = \mathbb{R}^n$ with $1 < p < n$ and $h \geq 0$, then equation (1) (and in fact a more general eigenvalue problem) is solved in [1].

Received by the editors April 6, 1998.
1991 Mathematics Subject Classification. Primary 31C15, 31C12, 31C45; Secondary 53C20.
Key words and phrases. Differential geometry, potential theory, non linear partial differential equations.

©1999 American Mathematical Society
2. Preliminaries on p-hyperbolicity

Definition. Let (M, g) be a connected Riemannian manifold, and $K \subset M$ a compact set. For $1 < p < \infty$, the p-capacity of K is defined by

$$
\text{Cap}_p(K) := \inf \left\{ \int_M |\nabla u|^p : u \in C_0^1(M), \, u \geq 1 \text{ on } K \right\}.
$$

The manifold M is said to be p-parabolic if $\text{Cap}_p(K) = 0$ for all compact subsets $K \subset M$ and p-hyperbolic otherwise. It is a well known fact that, in a p-hyperbolic manifold, the p-capacity of any compact set with non empty interior is always positive (see e.g. [6]).

Let $D \subset M$ be a non empty bounded domain. We introduce the Banach space $E^p = E^p(D, M)$ of functions $u \in W^{1,p}_{\text{loc}}(M)$ such that

$$
\|u\|^p_E := \int_D |u|^p dx + \int_M |\nabla u|^p dx < \infty.
$$

We denote by E^p_0 the closure of $C_0^1(M)$ in E^p.

Lemma 1. If M is p-parabolic, then $1 \in E^p_0$.

Proof. By hypothesis $\text{Cap}_p(D) = 0$; hence for all $\epsilon > 0$, there exists a function $u \in C_0^1(M)$ such that $u \equiv 1$ on D and $\int_M |\nabla u|^p dx < \epsilon$. Thus we have

$$
\|1 - u\|^p_E := \int_D |1 - u|^p dx + \int_M |\nabla u|^p dx = \int_M |\nabla u|^p dx \leq \epsilon.
$$

It follows that $1 \in E^p_0$. \hfill \Box

The next lemma is the well known Poincaré inequality.

Lemma 2. Let D be any bounded regular domain in a Riemannian manifold M and $1 \leq p < \infty$. Then there exists a constant A such that

$$
\left(\int_D |u - u_D|^p dx \right)^{1/p} \leq A \left(\int_D |\nabla u|^p dx \right)^{1/p}
$$

for all $u \in W^{1,p}_{\text{loc}}(M)$, where $u_D = \frac{1}{\text{vol}(D)} \int_D u dx$ is the mean value of u on D.

A reference is [3, Lemma 3.8]. \hfill \Box

Combining this lemma with Hölder’s (or Jensen’s) inequality, we obtain

Corollary 1. There exists a constant $c = c_D$ such that

$$
\left(\int_D |u - u_D| dx \right)^{1/p} \leq c_D \left(\int_M |\nabla u|^p dx \right)^{1/p}
$$

for all $u \in W^{1,p}_{\text{loc}}(M)$.

Proposition 1. Suppose that M is p-hyperbolic and let $D \subset M$ be as in Lemma 2. Then there exists a constant C_1 such that for all $u \in E^p_0$

$$
\int_D |u| dx \leq C_1 \left(\int_M |\nabla u|^p dx \right)^{1/p}.
$$

Proof. Suppose that such a constant does not exist. Then for all \(\varepsilon > 0 \) it is possible to find a function \(u \in E^p_0 \) such that
\[
\int_D |u| \, dx = \text{vol}(D) \quad \text{and} \quad \| \nabla u \|_{L^p(M)} \leq \varepsilon .
\]
We may also assume \(u \geq 0 \) (else replace \(u \) by \(|u| \)). From Corollary 1 one gets
\[
\int_D |u - 1| \, dx \leq c_D \varepsilon . (3)
\]
Let us now choose a ball \(B \subset \subset D \) and a function \(\psi \in C^1_0(M) \) such that \(0 \leq \psi \leq \frac{1}{2} \), \(\text{supp}(\psi) \subset D \) and \(\psi \equiv \frac{1}{2} \) on \(B \), and define the function \(v \in E^p_0 \) by \(v = 2 \max\{u; \psi\} \).
Observe first that \(v \geq 1 \) on \(B \), and define the sets
\[
A := \{ x \in D | \psi(x) \geq u(x) \} \quad \text{and} \quad A' := \{ x \in D | |u(x) - 1| \geq \frac{1}{2} \} .
\]
We have \(A \subset A' \) and by (3) we have \(\frac{1}{2} \text{vol}(A') \leq c_D \varepsilon \); thus
\[
\text{vol}(A) \leq 2c_D \varepsilon . (4)
\]
Now we have almost everywhere
\[
\nabla v = \begin{cases} 2\nabla u & \text{on } M \setminus A, \\ 2\nabla \psi & \text{on } A; \end{cases}
\]
in particular
\[
|\nabla v| \leq 2|\nabla u| + 2\chi_A|\nabla \psi| \quad \text{a.e.}
\]
from which one deduces
\[
\| \nabla v \|_{L^p(M)} \leq 2 \| \nabla u \|_{L^p(M)} + 2 \sup |\nabla \psi| \left(\text{vol}(A) \right)^{1/p} . (5)
\]
From (4) and (5) one obtains
\[
\| \nabla v \|_{L^p(M)} \leq \left(2\varepsilon + 2 \sup |\nabla \psi| \left(2c_D \varepsilon \right)^{1/p} \right) .
\]
Since \(v \geq 1 \) on \(B \) and \(\varepsilon \) is arbitrary, one deduces that \(\text{Cap}_p(B) = 0 \), which contradicts the fact that \(M \) is \(p \)-hyperbolic.

We may sum up our results so far in

Theorem 3. The following conditions are equivalent:

(a) \(M \) is \(p \)-hyperbolic;

(b) There exists a constant \(C_2 \) such that for all \(u \in E^p_0 \) one has
\[
\| u \|_{L^p(D)} \leq C_2 \cdot \| \nabla u \|_{L^p(M)} ;
\]

(c) \(1 \notin E^p_0 \).

Proof. The implication (b) \(\Rightarrow \) (c) is obvious and (c) \(\Rightarrow \) (a) is Lemma 1.
Let us write u as $u = (u - u_D) + u_D$; using Proposition 1 and Lemma 2, we see that

$$
\|u\|_{L^p(D)} \leq \|u - u_D\|_{L^p(D)} + \|u_D\|_{L^p(D)}
$$

$$
\leq A \left(\int_D |\nabla u|^p \, dx \right)^{1/p} + (\text{Vol}(D))^{1/p} \int_D |u| \, dx
$$

$$
\leq A \left(\int_D |\nabla u|^p \, dx \right)^{1/p} + (\text{Vol}(D))^{(1-p)/p} \left(\int_M |\nabla u|^p \, dx \right)^{1/p}
$$

$$
\leq C_2 \left(\int_M |\nabla u|^p \, dx \right)^{1/p}.
$$

This proves $(a) \Rightarrow (b)$. \hfill \Box

3. Proof of Theorem 2

We first choose a regular bounded domain $D \subset M$ such that $\text{supp}(h) \subset D$. We then define a functional $\mathcal{J} : E^p_0 \to \mathbb{R}$ by

$$
\mathcal{J}(u) = \frac{1}{p} \left(\int_M |\nabla u|^p \, dx \right) - \int_M h u \, dx.
$$

The manifold M being p-hyperbolic, we have

$$
\mathcal{J}(u) \geq \frac{1}{p} \|\nabla u\|_{L^p(M)}^p - \left| \int_M h u \, dx \right|
$$

$$
\geq \frac{1}{p} \|\nabla u\|_{L^p(M)}^p - \|h\|_{L^\infty} \cdot \|u\|_{L^1(D)}
$$

$$
\geq \frac{1}{p} \|\nabla u\|_{L^p(M)}^p - C_1 \|h\|_{L^\infty} \cdot \|\nabla u\|_{L^p(M)},
$$

where C_1 is the constant of Proposition 1. Since the function $g(x) = |x|^p - ax$ of the real variable x is bounded below, we conclude that the functional \mathcal{J} is bounded below on the space E^p_0.

Set $m := \inf \{ \mathcal{J}(u) | u \in E^p_0 \}$, and let $\{u_i\} \subset E^p_0$ be a minimizing sequence for \mathcal{J} (i.e. $\mathcal{J}(u_i) \to m$). Then from the inequality above, one deduces that $\{u_i\}$ is a bounded sequence in E^p_0. Since E^p_0 is a reflexive Banach space, this sequence contains a weakly convergent subsequence (still denoted by $\{u_i\}$). Let us denote by u^* the weak limit of $\{u_i\}$. By the compactness of the embedding $E^p_0 \subset L^1(D)$, we may assume that $\{u_i\}$ converges strongly in $L^1(D)$, in particular

$$
\int_D h u_i \to \int_D h u^*.
$$

By Theorem 3, $\|\nabla u\|_{L^p(M)}$ is an equivalent norm on E^p_0; hence by the weak lower semi-continuity of the norm on E^p_0 we have

$$
\|\nabla u^*\|_{L^p(M)} \leq \liminf_{i \to \infty} \|\nabla u_i\|_{L^p(M)}.
$$
From (6) and (7) one deduces that \(J(u^*) \leq \lim_{i \to \infty} \inf J(u_i) = m \); hence \(J(u^*) = m \). By the usual arguments from variational calculus, one deduces that \(u^* \) is a weak solution to (1).

The \(C^{1,\alpha} \) regularity follows from Theorem 1 in [5].

\[\square \]

Remark. We have in fact solved (1) in the space \(E_0^p \subset L^{1,p}(M) \).

References

DÉPARTEMENT DE MATHÉMATIQUES, ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE, 1015 LAUSANNE, SWITZERLAND

E-mail address: troyanov@math.epfl.ch