Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Solving the $p$-Laplacian on manifolds


Author: Marc Troyanov
Journal: Proc. Amer. Math. Soc. 128 (2000), 541-545
MSC (1991): Primary 31C15, 31C12, 31C45; Secondary 53C20
DOI: https://doi.org/10.1090/S0002-9939-99-05035-2
Published electronically: July 8, 1999
MathSciNet review: 1622993
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove in this paper that the equation $\Delta _{p}u+h=0$ on a $p$-hyperbolic manifold $M$ has a solution with $p$-integrable gradient for any bounded measurable function $h : M \to \mathbb R$ with compact support.


References [Enhancements On Off] (What's this?)

  • 1. P. Drábek, Nonlinear eigenvalue problem for $p$-Laplacian in $\mathbb R^n$, Math. Nachr. 173 (1995), 131-139. MR 96b:35064
  • 2. V. Gol'dshtein and M. Troyanov, Sur la non résolubilité du p-laplacien sur $\mathbb R^n$, C. R. Acad. Sci. Paris 326 (1998), 1185-1187. CMP 99:02
  • 3. E. Hebey, Sobolev spaces on Riemannian manifolds, Springer Lect. Notes in Math. 1635. CMP 98:04
  • 4. J. Heinonen, T. Kilpeläinen, and O. Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford Math. Monographs (1993). MR 94e:31003
  • 5. P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Diff. Equations 51 (1984), 126-150. MR 85g:35047
  • 6. M. Troyanov, Parabolicity of manifolds, préprint EPFL, 1997.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 31C15, 31C12, 31C45, 53C20

Retrieve articles in all journals with MSC (1991): 31C15, 31C12, 31C45, 53C20


Additional Information

Marc Troyanov
Affiliation: Départment de Mathématiques, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
Email: troyanov@math.epfl.ch

DOI: https://doi.org/10.1090/S0002-9939-99-05035-2
Keywords: Differential geometry, potential theory, non linear partial differential equations
Received by editor(s): April 6, 1998
Published electronically: July 8, 1999
Communicated by: Peter Li
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society