Oblique projections, biorthogonal Riesz bases

and multiwavelets in Hilbert spaces

Author:
Wai-Shing Tang

Journal:
Proc. Amer. Math. Soc. **128** (2000), 463-473

MSC (2000):
Primary 46C99, 47B99, 46B15

DOI:
https://doi.org/10.1090/S0002-9939-99-05075-3

Published electronically:
September 27, 1999

MathSciNet review:
1626494

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we obtain equivalent conditions relating oblique projections to biorthogonal Riesz bases and angles between closed linear subspaces of a Hilbert space. We also prove an extension theorem in the biorthogonal setting, which leads to biorthogonal multiwavelets.

**1.**A. Aldroubi,*Oblique projections in atomic spaces*, Proc. Amer. Math. Soc. 124 (1996), 2051-2060. MR**96i:42020****2.**A. Cohen, I. Daubechies and J. C. Feauveau,*Biorthogonal bases of compactly supported wavelets*, Comm. Pure Appl. Math. XLV (1992), 485-560. MR**93e:42044****3.**X. Dai and D. R. Larson,*Wandering vectors for unitary systems and orthogonal wavelets*, Mem. Amer. Math. Soc. 134 (1998), no. 640. MR**98m:47067****4.**I. C. Gohberg and M. G. Krein,*Introduction to The Theory of Linear Nonselfadjoint Operators,*Translations of Mathematical Monographs, Vol. 18, American Mathematical Society, Providence, 1969. MR**39:7447****5.**T. N. T. Goodman, S. L. Lee and W. S. Tang,*Wavelets in wandering subspaces*, Trans. Amer. Math. Soc. 338 (1993), 639-654. MR**93j:42017****6.**T. N. T. Goodman, S. L. Lee and W. S. Tang,*Wavelet bases for a set of commuting unitary operators*, Adv. Comput. Math. 1 (1993), 109-126. MR**94h:42057****7.**P. R. Halmos,*Introduction to Hilbert Spaces and Spectral Multiplicity*, Chelsea, New York, 1951. MR**13:563a****8.**R. Q. Jia and Z. W. Shen,*Multiresolution and wavelets*, Proc. Edinburgh Math. Soc. 37 (1994), 271-300. MR**95h:42035****9.**S. L. Lee, H. H. Tan and W. S. Tang,*Wavelet bases for a unitary operator*, Proc. Edinburgh Math. Soc. 38 (1995), 233-260. MR**96g:42019****10.**J. B. Robertson,*On wandering subspaces for unitary operators*, Proc. Amer. Math. Soc. 16 (1965), 233-236. MR**30:5165****11.**M. Unser and A. Aldroubi,*A general sampling theory for non-ideal acquisition devices,*IEEE Trans. on Signal Processing 42 (1994), 2915-2925.**12.**R. M. Young,*An Introduction to Nonharmonic Fourier Series*, Academic Press, New York, 1980. MR**81m:42027**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
46C99,
47B99,
46B15

Retrieve articles in all journals with MSC (2000): 46C99, 47B99, 46B15

Additional Information

**Wai-Shing Tang**

Affiliation:
Department of Mathematics, National University of Singapore, 10 Kent Ridge Crescent, 119260, Republic of Singapore

Email:
mattws@math.nus.edu.sg

DOI:
https://doi.org/10.1090/S0002-9939-99-05075-3

Keywords:
Riesz basis,
biorthogonal system,
oblique projection,
multiwavelets

Received by editor(s):
March 23, 1998

Published electronically:
September 27, 1999

Communicated by:
David R. Larson

Article copyright:
© Copyright 1999
American Mathematical Society