Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

$KD_\infty $ is a CS-algebra


Authors: S. K. Jain, P. Kanwar, S. Malik and J. B. Srivastava
Journal: Proc. Amer. Math. Soc. 128 (2000), 397-400
MSC (1991): Primary 16S14, 13B21, 13C10, 13F05
DOI: https://doi.org/10.1090/S0002-9939-99-05095-9
Published electronically: July 8, 1999
MathSciNet review: 1636958
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, it is shown that the group algebra $KD_\infty $ is right CS if and only if $char(K)\neq 2$. Moreover, when $char(K)\neq 2$, then $KD_\infty $ is also CS as a module over its center.


References [Enhancements On Off] (What's this?)

  • 1. Nguyen Viet Dung, Dinh Van Huynh, Patrick F. Smith, and Robert Wisbauer, Extending modules, Pitman Research Notes in Mathematics Series, vol. 313, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1994. With the collaboration of John Clark and N. Vanaja. MR 1312366
  • 2. Irving Kaplansky, Commutative rings, Allyn and Bacon, Inc., Boston, Mass., 1970. MR 0254021
  • 3. Joachim Lambek, Lectures on rings and modules, With an appendix by Ian G. Connell, Blaisdell Publishing Co. Ginn and Co., Waltham, Mass.-Toronto, Ont.-London, 1966. MR 0206032
  • 4. J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1987. With the cooperation of L. W. Small; A Wiley-Interscience Publication. MR 934572
  • 5. Donald S. Passman, The algebraic structure of group rings, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1977. MR 470211
  • 6. Donald S. Passman, Infinite group rings, Marcel Dekker, Inc., New York, 1971. Pure and Applied Mathematics, 6. MR 0314951
  • 7. Louis H. Rowen, Ring theory. Vol. I, Pure and Applied Mathematics, vol. 127, Academic Press, Inc., Boston, MA, 1988. MR 940245
  • 8. Oscar Zariski and Pierre Samuel, Commutative Algebra, vol. I, D. Van Nostrand, NY, 1958. MR 19:833e

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 16S14, 13B21, 13C10, 13F05

Retrieve articles in all journals with MSC (1991): 16S14, 13B21, 13C10, 13F05


Additional Information

S. K. Jain
Affiliation: Department of Mathematics, Ohio University, Athens, Ohio 45701
Email: jain@math.ohiou.edu

P. Kanwar
Address at time of publication: Division of Mathematics and Computer Science, Truman State University, Kirksville, Missouri 63501
Email: pkanwar@math.ohiou.edu

S. Malik
Affiliation: Department of Mathematics, Hindu College, Delhi-110007, India
Email: sbm@csec.ernet.in

J. B. Srivastava
Affiliation: Department of Mathematics, Indian Institute of Technology, New Delhi-110016, India
Email: jbsrivas@maths.iitd.ernet.in

DOI: https://doi.org/10.1090/S0002-9939-99-05095-9
Keywords: Group algebra, CS-ring, Dedekind domain
Received by editor(s): April 10, 1998
Published electronically: July 8, 1999
Communicated by: Ken Goodearl
Article copyright: © Copyright 1999 American Mathematical Society