Equivalences for blocks of the Weyl groups

Author:
Radha Kessar

Journal:
Proc. Amer. Math. Soc. **128** (2000), 337-346

MSC (1991):
Primary 20Cxx

DOI:
https://doi.org/10.1090/S0002-9939-99-05151-5

Published electronically:
July 6, 1999

MathSciNet review:
1641108

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We describe the source algebras of the blocks of the Weyl groups of type B and type D in terms of the source algebras of the blocks of the symmetric groups. As a consequence, we show that Puig's conjecture on the finiteness of the number of isomorphism classes of source algebras for blocks of finite groups with a fixed defect group holds for these classes of groups. We also show how certain isomorphisms between subalgebras of block algebras of the symmetric groups can be lifted to block algebras of the Weyl groups of type B.

**[B1]**M. Broué,*Isométries de caracteres et équivalences de Morita ou dérivées*, Publ. Math. I.H.E.S.**71**(1990), 45-63. MR**91i:20007****[B2]**-,*Equivalences of blocks of group algebras*, Publ. LMENS-93-4, Paris (1993). MR**97c:20004****[JK]**G.D. James and A. Kerber,*The representation theory of the symmetric group. Enc. of Math. 16*, Addison & Wesley, London, 1981. MR**83k:20003****[NT]**H. Nagao and Y. Tsushima,*Representations of finite groups*, Academic Press, London, 1989. MR**90h:20008****[O1]**M. Osima,*On the representations of the generalized symmetric group*, Math. J. Okayama Univ.**4**(1955-56), 39-56. MR**16:794d****[O2]**-,*On the representations of the generalized symmetric group II*, Math. J. Okayama Univ.**6**(1956-57), 81-97. MR**18:716e****[P1]**L. Puig,*The Nakayama conjecture and the Brauer pairs*, Séminaire sur les Groupes Finis, Pub. Math. Univ. Paris VII, 25, 1987.MR**88i:20018****[P2]**-,*On Joanna Scopes' criterion of equivalence for blocks of symmetric groups*, Algebra Colloq.**1:1**(1994), 25-55. MR**95f:20020****[S]**J. Scopes,*Cartan matrices and Morita equivalence for blocks of the symmetric groups*, J. Algebra**142**(1991), 441-455. MR**92h:20023****[T]**J. Thévenaz,*G-Algebras and Modular Representation Theory*, Oxford University Press, Oxford, 1995.MR**96j:20017**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
20Cxx

Retrieve articles in all journals with MSC (1991): 20Cxx

Additional Information

**Radha Kessar**

Affiliation:
Department of Mathematics, University of Minnesota, 206 Church Street, S.E., Minneapolis, Minnesota 55455

Email:
kessar@math.umn.edu

DOI:
https://doi.org/10.1090/S0002-9939-99-05151-5

Received by editor(s):
March 30, 1998

Published electronically:
July 6, 1999

Communicated by:
Ronald M. Solomon

Article copyright:
© Copyright 1999
American Mathematical Society